導航:首頁 > 數字科學 > 中國歷史上傑出的數學成就有哪些

中國歷史上傑出的數學成就有哪些

發布時間:2022-09-23 07:50:54

❶ 中國古代數學有什麼成就

萌芽時期的中國古代數學,世界上最早的十進位值制記數法,,勾股定理與陳子測日,九九歌,《墨經》幾何學,,《周易》、《莊子》和孫臏的數學成就,《算經十書》與漢唐數學,科舉考試與《算經十書》,中國古代數學的代表作《九章算術》,《海島算經》與重差術,有趣的「韓信暗點兵」問題,《緝古算經》與一元三次方程,其他算經,祖沖之的世界記錄,劉焯、一行與世界上第一次子午線實測,宋元全盛時期的數學,偉大的科學家沈括,馳名中外的「秦九韶法」,X與天元術,楊輝三角,球面三角學的奠基者郭守敬,集前賢之大成的朱世傑,明清數學,中國古代數學的回落,珠算與《演算法統宗》,中西數學的最終合流。

❷ 中國數學發展的歷史上創造出了哪些成就

我國為四大文明古國之一,在數學發展的歷史長河中,創造出許多傑出成就。比如勾股定理的發現和證明、「0」和負數的發明和使用、十進位值制記數法、祖沖之的圓周率推算、有個方程的四元術等都是我國古代數學領域的貢獻,在世界數學史上佔有重要地位。我國古代數學取得的光輝成就,是人類對數學的認識過程中邁出的重要步伐,遠遠走在世界的前列,擴大了數學的領域,推動了數學的發展,在人類認識和改造世界過程中發揮了重要作用。

❸ 我國近代的數學家取得了哪些偉大的成就

1、姜立夫

姜立夫(1890—1978),數學家,數學教育家。南開大學數學系的創始人。曾任中央研究院數學所所長。

對中國現代數學教學與研究的發展有重要貢獻。姜立夫的學術生涯開始於綜合幾何的研究。

從40年代起,姜立夫的研究課題主要是圓素與球素幾何學,逐步整理出一套以二階對稱方陣作為圓的坐標,以二階埃爾米特方陣作為球的坐標的新方法。

2、熊慶來

熊慶來(1893年9月11日—1969年2月3日),字迪之,出生於雲南省紅河哈尼族彝族自治州彌勒市息宰村,中國現代數學先驅,中國函數論的主要開拓者之一,以「熊氏無窮數」理論載入世界數學史冊。

熊慶來主要從事函數論方面的研究工作,定義了一個「無窮級函數」,國際上稱為「熊氏無窮數」。熊慶來在「函數理論」領域造詣很深。

1932年他代表中國第一次出席了瑞士蘇黎世國際數學家大會,1934年,他的論文《關於無窮級整函數與亞純函數》發表,並以此獲得法國國家博士學位,成為第一個獲此學位的中國人。

這篇論文中,熊慶來所定義的「無窮級函數」,國際上稱為「熊氏無窮數」,被載入了世界數學史冊,奠定了他在國際數學界的地位。

3、蘇步青

蘇步青(1902年9月23日—2003年3月17日),浙江溫州平陽人,祖籍福建省泉州市,中國科學院院士,中國著名的數學家、教育家,中國微分幾何學派創始人,被譽為「東方國度上燦爛的數學明星」、「東方第一幾何學家」、「數學之王」。

他創建了中國微分幾何學派,晚年創建開拓了計算幾何新的研究方向。

他先後在仿射微分幾何、射影微分幾何、一般空間微分幾何及射影共軛網理論等方面做出了傑出的貢獻,創建了國際公認的中國微分幾何學派;在70多歲高齡時,還結合解決船體數學放樣的實際課題,創建和開始了計算幾何的新研究方向。

蘇步青的研究方向主要是微分幾何。蘇步青的大部分研究工作是屬於仿射微分幾何學和射影微分幾何學方向的。

此外,他還致力於一般空間微分幾何學和計算幾何學的研究。他創立了國際公認的浙江大學微分幾何學學派。

4、陳景潤

陳景潤(1933年5月22日-1996年3月19日),男,漢族,無黨派人士,福建福州人,當代數學家。

1957年,陳景潤被調到中國科學院研究所工作,做為新的起點,他更加刻苦鑽研。經過10多年的推算,在1966年5月,發表了他的論文《表大偶數為一個素數及一個不超過二個素數的乘積之和》 。

論文的發表,受到世界數學界和著名數學家的高度重視和稱贊。英國數學家哈伯斯坦和德國數學家黎希特把陳景潤的論文寫進數學書中,稱為「陳氏定理」。

5、華羅庚

華羅庚(1910.11.12—1985.6.12), 出生於江蘇常州金壇區,祖籍江蘇丹陽。數學家,中國科學院院士,美國國家科學院外籍院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。中國第一至第六屆全國人大常委會委員。

他是中國解析數論、矩陣幾何學、典型群、自守函數論與多元復變函數論等多方面研究的創始人和開拓者,並被列為芝加哥科學技術博物館中當今世界88位數學偉人之一。

在國際上以華氏命名的數學科研成果就有「華氏定理」、「懷依—華不等式」、「華氏不等式」、「普勞威爾—加當華定理」、「華氏運算元」、「華—王方法」等。

20世紀40年代,解決了高斯完整三角和的估計這一歷史難題,得到了最佳誤差階估計;對G.H.哈代與J.E.李特爾伍德關於華林問題及E.賴特關於塔里問題的結果作了重大的改進,三角和研究成果被國際數學界稱為「華氏定理」。

在代數方面,證明了歷史長久遺留的一維射影幾何的基本定理;給出了體的正規子體一定包含在它的中心之中這個結果的一個簡單而直接的證明,被稱為嘉當-布饒爾-華定理。

與王元教授合作在近代數論方法應用研究方面獲重要成果,被稱為「華-王方法」。

參考資料來源:網路——蘇步青

參考資料來源:網路——熊慶來

參考資料來源:網路——姜立夫

參考資料來源:網路——陳景潤

參考資料來源:網路——華羅庚

❹ 我國在數學發展史上創造出了哪些成就

我國為世界四大文明古國之一,在數學發展史上,創造出許多傑出成就。比如勾股定理的發現和證明、「0」和負數的發明和使用、十進位值制記數法、祖沖之的圓周率推算、方程的四元術等,都是我國古代數學領域的貢獻,在世界數學史上佔有重要地位。

我國古代數學取得的光輝成就,是人類對數學的認識過程中邁發現並證明勾股定理是一個基本幾何定理,是人類早期發現並證明的重要數學定理之一,是用代數思想解決幾何問題的昀重要的工具之一,也是數形結合的紐帶之一。勾股定理是餘弦定理的一個特例。

世界上幾個文明古國如古巴比倫、古埃及都先後研究過這條定理。我國是昀早了解勾股定理的國家之一,被稱為「商高定理」。成書於公元前1世紀的我國昀古老的天文學著作《周髀算經》中,記載了周武王的大臣周公詢問皇家數學家商高的話,其中就有勾股定理的內容。

這段話的內容是,周公問:「我聽說你對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼關於天的高度和地面的一些測量的數據是怎麼樣得到的呢?」

商高說:「數的產生來源於對圓和方這些圖形的認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼,它的斜邊『弦』就必定是5。」

這段對話,是我國古籍中「勾三、股四、弦五」的昀早記載。

用現在的數學語言來表述就是:在任何一個不等腰的直角三角形中,兩條直角邊的長度的平方和等於斜邊長度的平方。也可以理解成兩個長邊的平方之差與昀短邊的平方相等。

基於上述淵源,我國學者一般把此定理叫作「勾股定理」或「商高定理」。

商高沒有解答勾股定理的具體內容,不過周公的後人陳子曾經運用他所理解的太陽和大地知識,運用勾股定理測日影,以確定太陽的高度。這是我國古代人民利用勾股定理在科學上進行的實踐。

周公的後人陳子也成了一個數學家,是他詳細地講述了測量太陽高度的全套方案。這位陳子是當時的數學權威,《周髀算經》這本書,除了昀前面一節提到商高以外,剩下的部分說的都是陳子的事。

❺ 我國古代數學有哪些成就

主要著作
《張丘建算經》
《張丘建算經》三卷,據錢寶琮考,約成書於公元466~485年間.張丘建,北魏時清河(今山東臨清一帶)人,生平不詳。最小公倍數的應用、等差數列各元素互求以及「百雞術」等是其主要成就。「百雞術」是世界著名的不定方程問題。13世紀義大利斐波那契《算經》、15世紀阿拉伯阿爾·卡西<<算術之鑰》等著作中均出現有相同的問題。
《四元玉鑒》
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算學啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創作有「四元術」(多元高次方程列式與消元解法)、「垛積法」(高階等差數列求和)與「招差術」(高次內插法)
《黃帝九章算經細草》
賈憲:〈〈黃帝九章算經細草〉〉
中國古典數學家在宋元時期達到了高峰,這一發展的序幕是「賈憲三角」(二項展開系數表)的發現及與之密切相關的高次開方法(「增乘開方法」)的創立。賈憲,北宋人,約於1050年左右完成〈〈黃帝九章算經細草〉〉,原書佚失,但其主要內容被楊輝(約13世紀中)著作所抄錄,因能傳世。楊輝〈〈詳解九章演算法〉〉(1261)載有「開方作法本源」圖,註明「賈憲用此術」。這就是著名的「賈憲三角」,或稱「楊輝三角」。〈〈詳解九章演算法〉〉同時錄有賈憲進行高次冪開方的「增乘開方法」。
賈憲三角在西方文獻中稱「帕斯卡三角」,1654年為法國數學家 B·帕斯卡重新發現。
《數書九章》
秦九韶:〈〈數書九章〉〉
秦九韶(約1202~1261),字道吉,四川安岳人,先後在湖北、安徽、江蘇、浙江等地做官,1261年左右被貶至梅州(今廣東梅縣),不久死於任所。秦九韶與李冶、楊輝、朱世傑並稱宋元數學四大家。他早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的〈〈數書九章〉〉。〈〈數書九章〉〉全書共18卷,81題,分九大類(大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易)。其最重要的數學成就——「大衍總數術」(一次同餘組解法)與「正負開方術」(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。
《測圓海鏡》
李冶:《測圓海鏡》——開元術
隨著高次方程數值求解技術的發展,列方程的方法也相應產生,這就是所謂「開元術」。在傳世的宋元數學著作中,首先系統闡述開元術的是李冶的《測圓海鏡》。
李冶(1192~1279)原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回家。1248年撰成《測圓海鏡》,其主要目的就是說明用開元術列方程的方法。「開元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某」,可以說是符號代數的嘗試。李冶還有另一部數學著作《益古演段》(1259),也是講解開元術的。
《九章重差圖》
劉徽: 《海島算經》 《九章算術注》 《九章重差圖》
263年左右,六會發現當圓內接正多邊形的變數無限增加時,多邊形的面積則可無限逼近圓面積,即所謂「割之彌細,所失彌少,割之又割,以至於不可割,則與圓周
合體而無所失矣。」劉徽採用了以直代曲、無限趨近、「內外夾逼」的思想,創立了「割圓術」
《重差》原為《九章算術注》的第十卷,即後來的《海島算經》,內容是測量目標物的高和遠的計算方法。重差法是測量數學中的重要方法。
祖沖之:(公元429年─公元500年)是我國傑出的數學家,科學家。南北朝時期人,漢族人,字文遠。他當時就把圓周 率 精確到小數點後7位(3.1415926<圓周率<3.1415927),比西方領先了1500年,並得出355/113的密率,22/7的約率。寫書《綴術》,記載了他計算圓周率的方法,不過已經失傳。

❻ 中國古代數學有哪些成就

最牛的當然是《九章算術》了
劉 徽
劉徽(生於公元250年左右),南北朝時期數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.

賈 憲
賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xiào,意:數導)均已失傳。

他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。

秦九韶
秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。

李冶
李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。

朱世傑
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法).

祖沖之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。

祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。

祖 暅
祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。

楊輝
楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。
他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。
他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。

趙 爽
趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。

趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。

❼ 中國歷史上傑出的數學成就

1、勾股定理(商高定理)。發明者商高(西周人),早於第二發明者畢達哥拉斯(公元前580—前500)550多年。
2、負數的發現。這個發現最早見於《九章算術》,這一發現早於印度600多年,早於西方1600多年。
3、最精確的圓周率:3.1415926<π<3.1415927。南朝的祖沖之繼承了劉徽的工作,求出了精確到七位有效數字的圓周率,這一結果的得到,相當於應用算籌對九位數字的大數目進行各種運算(包括開方)130次以上,其勞動量之大是可以想像的。為了計算方便,祖沖之還求出了兩個用分數表示圓周率的數據,一個是,稱密率,這是分子、分母在一千以內表示圓周率的最佳漸近分數;另一個是,稱約率。祖沖之求得的圓周率數據,遠遠地走在世界的前面,直至1000年後,阿拉伯數學家阿爾·卡西於公元1427年,法國數學家維葉特於公元1540—1603年間,才求出更精確的數據。

❽ 中國古代的數學成就都有哪些

《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。

《九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。

中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。

趙爽是三國時期吳人,在中國歷史上他是最早對數學定理和公式進行證明的數學家之一,其學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。

南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。

祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。

隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。

公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。

從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。

賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。

秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。

李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。

公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。

公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。

14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。

明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。

由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》[2卷]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷]是介紹西方三角學的著作。

❾ 我國古代有哪些驚人的數學成就

我國古代數學成就,其實比我們想像中的還要大,並且除了理論性的學說之外,數學還與古代的天文歷法結合起來,創造出了輝煌的成就。

說起圓周率,不得不提起幾位著名的數學家——劉徽、祖沖之。圓周率在我國古代很早就有人研究。我國數學家劉徽首創割圓法,求出了π的近似值,已經精確到了兩位小數。南北朝時期,數學家祖沖之將π進一步精確到小數點後七位,及3.1415926和3.1415927。

說過重要學說和傑出數學家後,也不得不提到我國重要的數學著作。除上文提及的《周髀算經》、《九章算術》和《數學九章》外,還有劉徽的《海島算經》,朱世傑的《算術啟蒙》和《四元玉鑒》,楊輝的《日用演算法》、《乘除通變本末》、《續古摘奇演算法》,趙爽的《周髀算經注》等。

望採納,歡迎交流與討論~

閱讀全文

與中國歷史上傑出的數學成就有哪些相關的資料

熱點內容
在大學物理中j和i有什麼區別6 瀏覽:728
兀平方等於多少數學 瀏覽:812
生物的考美國研究生專業有哪些專業課程 瀏覽:815
如何提高四年級班級數學成績 瀏覽:871
戀人未滿是什麼意思 瀏覽:83
山西高二生物學什麼 瀏覽:888
什麼是課堂的物理環境 瀏覽:721
如何備考語文專業知識點 瀏覽:62
如何改變狗的生物鍾 瀏覽:186
gender什麼意思 瀏覽:170
武大物理彭桓武班怎麼樣 瀏覽:123
語文教師的素質從哪裡來 瀏覽:877
語文如何考一百分 瀏覽:942
王者榮物理加成是什麼意思 瀏覽:599
數學課本多少平方 瀏覽:204
鹽酸化學家怎麼寫 瀏覽:612
什麼叫御姐 瀏覽:440
物理師范考研考什麼專業好 瀏覽:506
fdi是什麼意思 瀏覽:84