導航:首頁 > 數字科學 > 小學數學數的概念如何建立

小學數學數的概念如何建立

發布時間:2022-08-06 09:03:26

㈠ 怎樣培養構建數學概念的能力

如何培養小學生數學概念理解能力
數學課堂教學中,我們教師經常會遇到這樣的情況:當教師要求學生描述概念的定義時,他們往往能夠給予流利而圓滿的回答,但卻經常不能正確地運用它們解決有關問題。筆者在教學實踐中,也遇到了類似的情況,比如在學習二次函數的時候能准確說出解析式的幾種形式,但在具體的題目中卻不能靈活使用哪一種解析式解題,不會用數形結合的方法畫草圖分析。學生正確而流利的回答恰恰掩蓋了他們並不理解的本質,這種現象在中學數學教學實踐中比比皆是,我們稱之為膚淺理解。究其原因,筆者認為,大多數學生是因為對數學概念、定理、法則等的本質內涵根本不理解或理解不深刻,一味地死記硬背、套題型做習題。這與教師在教學過程中過多注重「舉一反一」「高密度訓練」,忽視學生對數學知識的深刻理解有一定的關系。本文針對上述所列問題,進行深人分析,談談促進初中生數學認知理解的幾條措施。
一、運用多種方式,為學生提供豐富的感性材料
數學概念、性質、定理等具有高度的抽象性和概括性,如果讓初中生直接理解,肯定會存在很大困難,所以在數學教學中,教師應該為學生提供一些實物、模型、教具、教學軟體等豐富的數學學習材料,讓學生有充分的時間對具體事物進行操作,使他們獲得學習新知識所需要的具體經驗,通過自己的思維活動來形成對概念的理解,而不是通過機械的重復,記住教師所講述的那些關於概念的現成解釋,這樣學生所獲得的知識才是全面的、清晰的、牢固的。在教學過程中,可以採取以下措施:
1、讓學生動手操作
例如,在講授判定三角形全等的邊角邊公理時,就可以先讓每個學生利用直尺和量角器在白紙上作一個△abc,使 =60,ab=5cm,bc=3cm,並用剪刀剪下此三角形,然後與其他同學所作三角形進行對照,看看能否重合,這時學生們會發現是能夠重合的,接下來讓學生改變角度和長度大小再剪三角形,並進行再對照,這樣學生自然會發現每次所作三角形都能夠完全重合。此時,教師再啟發學生,總結出:如果兩個三角形兩邊及其夾角分別相等,則這兩個三角形全等,即邊角邊定理。這種教學方式,既活躍了課堂氣氛,激發了學生的學習興趣,又使抽象的數學知識蘊於簡單實驗之中,使學生易於接受新知識。

㈡ 小學數學如何實施概念教學

一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」
等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。
二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時,

既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。
三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。
四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。

㈢ 如何建立數的概念

有很多小孩就是從熟記數字開始學會識數的。
所以不要忽略「背」的功夫。
先教他從1-10「背」會。
咱們中國古話不就說熟能生巧嗎?
「背」完後再用樓上說的游戲的方法,因地制宜,隨時隨地,進行「音物」對應訓練,「音形」對應訓練等等。逐漸地,就會產生數的概念了。
這一方法也可用於幼兒識字教學。
就我本人而言,比較喜歡武漢大學開發的「零歲方案」教材。
我在我小孩身上作過教育試驗,應該是比較成功的。
她小時(三歲時)基本可以閱讀了。數學現在當然是最好的。

㈣ 小學數學概念的小學數學概念教學過程與方法

小學數學概念教學的過程
根據數學概念學習的心理過程及特徵,數學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。
(一)數學概念的引入
數學概念的引入,是數學概念教學的第一個環節,也是十分重要的環節。概念引入得當,就可以緊緊地圍繞課題,充分地激發起學生的興趣和學習動機,為學生順利地掌握概念起到奠基作用。
引出新概念的過程,是揭示概念的發生和形成過程,而各個數學概念的發生形成過程又不盡相同,有的是現實模型的直接反映;有的是在已有概念的基礎上經過一次或多次抽象後得到的;有的是從數學理論發展的需要中產生的;有的是為解決實際問題的需要而產生的;有的是將思維對象理想化,經過推理而得;有的則是從理論上的存在性或從數學對象的結構中構造產生的。因此,教學中必須根據各種概念的產生背景,結合學生的具體情況,適當地選取不同的方式去引入概念。一般來說,數學概念的引入可以採用如下幾種方法。
1、以感性材料為基礎引入新概念。
用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為感性材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。
例如,要學習「平行線」的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然後分化出各例的屬性,從中找出共同的本質屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等,最後抽象出本質屬性,得到平行線的定義。
以感性材料為基礎引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特徵性質的事例,正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質屬性,形成概念。
2、以新、舊概念之間的關系引入新概念。
如果新、舊概念之間存在某種關系,如相容關系、不相容關系等,那麼新概念的引入就可以充分地利用這種關系去進行。
例如,學習「乘法意義」時,可以從「加法意義」來引入。又如,學習「整除」概念時,可以從「除法」中的「除盡」來引入。又如,學習「質因數」可以從「因數」和「質數」這兩個概念引入。再如,在學習質數、合數概念時,可用約數概念引入:「請同學們寫出數1,2,6,7,8,12,11,15的所有約數。它們各有幾個約數?你能給出一個分類標准,把這些數進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?」
3、以「問題」的形式引入新概念。
以「問題」的形式引入新概念,這也是概念教學中常用的方法。一般來說,用「問題」引入概念的途徑有兩條:①從現實生活中的問題引入數學概念;②從數學問題或理論本身的發展需要引入概念。
例如,在學習「平均數」時,教師可以先向學生呈現一個「幼兒園小朋友爭拿糖果」的生活情境,讓學生思考,為什麼有的小朋友很高興,有的小朋友很不高興?應該怎樣做才能使大家都高興?接下來應該怎麼做?這個幼兒園的老師可能會怎麼做?
4、從概念的發生過程引入新概念。
數學中有些概念是用發生式定義的,在進行這類概念的教學時,可以採用演示活動的直觀教具或演示畫圖說明的方法去揭示事物的發生過程。例如,小數、分數等概念都可以這樣引入。這種方法生動直觀,體現了運動變化的觀點和思想,同時,引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。
(二)小學數學概念的形成 引入概念,僅是概念教學的第一步,要使學生獲得概念,還必須引導學生准確地理解概念,明確概念的內涵與外延,正確表述概念的本質屬性。為此,教學中可採用一些具有針對性的方法。
1、對比與類比。
對比概念,可以找出概念間的差異,類比概念,可以發現概念間的相同或相似之處。例如,學習「整除」概念時,可以與「除法」中的「除盡」概念進行對比,去比較發現兩者的不同點。用對比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內涵,防止舊概念對學習新概念產生的負遷移作用的影響。
2、恰當運用反例。
概念教學中,除了從正面去揭示概念的內涵外,還應考慮運用適當的反例去突出概念的本質屬性,尤其是讓學生通過對比正例與反例的差異,對自己出現的錯誤進行反思,更利於強化學生對概念本質屬性的理解。
用反例去突出概念的本質屬性,實質是使學生明確概念的外延從而加深對概念內涵的理解。凡具有概念所反映的本質屬性的對象必屬於該概念的外延集,而反例的構造,就是讓學生找出不屬於概念外延集的對象,顯然,這是概念教學中的一種重要手段。但必須注意,所選的反例應當恰當,防止過難、過偏,造成學生的注意力分散,而達不到突出概念本質屬性的目的。
3、合理運用變式。
依靠感性材料理解概念,往往由於提供的感性材料具有片面性、局限性,或者感性材料的非本質屬性具有較明顯的突出特徵,容易形成干擾的信息,而削弱學生對概念本質屬性的正確理解。因此,在教學中應注意運用變式,從不同角度、不同方面去反映和刻畫概念的本質屬性。一般來說,變式包括圖形變式、式子變式和字母變式等。
例如,講授「等腰三角形」概念,教師除了用常見的圖形(圖6-1(1))展示外,還應採用變式圖形(圖6-1(2)、(3)、(4))去強化這一概念,因為利用等腰三角形的性質去解題時,所遇見的圖形往往是後面幾種情形。
(三)小學數學概念的鞏固
為了使學生牢固地掌握所學的概念,還必須有概念的鞏固和應用過程。教學中應注意如下幾個方面。
1、注意及時復習
概念的鞏固是在對概念的理解和應用中去完成和實現的,同時還必須及時復習,鞏固離不開必要的復習。復習的方式可以是對個別概念進行復述,也可以通過解決問題去復習概念,而更多地則是在概念體系中去復習概念。當概念教學到一定階段時,特別是在章節末復習、期末復習和畢業總復習時,要重視對所學概念的整理和系統化,從縱向和橫向找出各概念之間的關系,形成概念體系。
2、重視應用
在概念教學中,既要引導學生由具體到抽象,形成概念,又要讓學生由抽象到具體,運用概念,學生是否牢固地掌握了某個概念,不僅在於能否說出這個概念的名稱和背誦概念的定義,而且還在於能否正確靈活地應用,通過應用可以加深理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。
(1)概念內涵的應用
①復述概念的定義或根據定義填空。
②根據定義判斷是非或改錯。
③根據定義推理。
④根據定義計算。
例4(1)什麼叫互質數?答:是互質數。
(2)判斷題:
27和20是互質數()
34與85是互質數()
有公約數1的兩個數是互質數()
兩個合數一定不是互質數()
(3)鈍角三角形的一個角是82o,另兩個角的度數是互質數,這兩個角可能是多少度?
(4)如果P是質數,那麼比P小的自然數都與P互質。這句話對嗎?請說明理由?
2.概念外延的應用
(1)舉例
(2)辨認肯定例證或否定例證。並說明理由。
(3)按指定的條件從概念的外延中選擇事例。
(4)將概念按不同標准分類。
例5(1)列舉你所見到過的圓柱形物體。
(2)下列圖形中的陰影部分,哪些是扇形?(圖6-2)
圖6—2
(3)分母是9的最簡真分數有_分子是9的假分數中,最小的一個是
(4)將自然數2-19按不同標准分成兩類(至少提出3種不同的分法)
概念的應用可分為簡單應用和綜合應用,在初步形成某一新概念後通過簡單應用可以促進對新概念的理解,綜合應用一般在學習了一系列概念後,把這些概念結合起來加以應用,這種練習可以培養學生綜合運用知識的能力。
(三)注意辨析
隨著學習的深入,學生掌握的概念不斷增多,有些概念的文字表述相同,有些概念內涵相近,使得學生容易產生混淆,如質數與互質數,整除與除盡,體積與容積等等。因此在概念的鞏固階段,要注意組織學生運用對比的方法,弄清易混淆概念的區別和聯系,以促使概念的精確分化。
例6關於面積和周長,可組織學生從下列幾個方面進行對見
(1)什麼叫做長方形的周長?什麼叫做長方形的面積?
(2)周長和面積常用的計量單位分別有哪些?
(3)在圖6—3中,A,B兩個圖形的周長相等嗎?面積相等嗎?
圖6—4
圖6—3
(4)圖6—4中的每一小方格代表一平方厘米,這個圖的面積是,周長是,剪一刀,然後將它拼成一個正方形,這個正方形的周長是,面積是。
數學概念是用詞或片語來表達的,但有些詞語受日常用語的影響,會給學生造成認識和理解上的錯覺和障礙。如幾何知識中的高」、「底」、「腰」等概念,從字面上容易使學生產生「鉛垂方向」與「下方」、「兩側」的錯覺。而「倒數」則強化了分子與分母顛倒位置的直觀認識,弱化了「兩個數的乘積等於1」的本質屬性,因此在教學時,要幫助學生分清一些詞的日常意義和專門的數學意義,正確地理解表示概念的詞語,從而准確地掌握概念。

㈤ 如何進行小學數學概念教學

1.直觀形象地引入概念

數學概念比較抽象,而小學生,特別是低年級小學生,由於年齡、知識和生活的局限,其思維處在具體形象思維為主的階段。認識一個事物、理解一個數學道理,主要是憑借事物的具體形象。因此,教師在數學概念教學的過程中,一定要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。如在教平均數應用題時,利用鉛筆做教具,重溫「平均分」的概念。用9個同樣大的小木塊擺出三堆,第一堆1塊,第二堆2塊,第三堆6塊,問:「每堆一樣多嗎?哪堆多?哪堆少?」學生都能正確回答。這時,又把這三堆木塊混到一起,重新平均分三份,每份都是3塊,告訴學生「3」這個新得到的數,是這三堆木塊的「平均數」。再演示一遍,要求學生仔細看,用心想:「平均數」是怎樣得到的。學生看把原來的三堆合並起來,變成一堆,再把這堆木塊分做3份,每堆正好3塊。這個演示過程,既揭示了「平均數」的概念,又有意識地滲透「總數量÷總份數=平均數」的計算方法。然後,又把木塊按原來的樣子1塊,2塊、6塊地擺好,讓學生觀察,平均數「3」與原來的數比較大小。學生說,平均數3比原來大的數小,比原來小的數大,這樣,學生就形象地理解了「求平均數」這一概念的本質特徵。
2.運用舊知識引出新概念
數學中的有些概念,往往難以直觀表述。如比例尺、循環小數等,但它們與舊知識都有內在聯系。就充分運用舊知識來引出新概念。在備課時要分析這個新概念有哪些舊知識與它有內在的聯系。利用學生已掌握的舊知識講授新概念,學生是容易接受的。蘇霍姆林斯基說:「教給學生能藉助已有的知識去獲取知識,這是最高的教學技巧之所在。」從心理學來分析,無恐懼心理,學生容易活躍;無畏難情緒,易於啟發思維;舊知識記憶好,容易受鼓舞;所以運用舊知識引出新概念教學效果好。例如從求出幾個數各自的「倍數」從而引出「公倍數」、「最小公倍數」等概念。總之,把已有的知識作為學習新知識的基礎,以舊帶新,再化新為舊,如此循環往復,既促使學生明確了概念,又掌握了新舊概念間的聯系。
3.通過實踐認識事物本質、形成概念
常言說,實踐出真知,手是腦的老師。學生通過演示學具,可以理解一些難以講解的概念。如一年級小學生初學數的大小比較。是用小雞小鴨學具,一一對比。如一隻小雞對一隻小鴨,第二隻小雞對第二隻小鴨,……直到第六隻小雞沒有小鴨對比了,就叫小雞比小鴨多1隻。又如二年級小學生學習「同樣多」這個概念也是用學具紅花和黃花,學生先擺5朵紅花、再擺和紅花一樣多的5朵黃花,這樣就把「同樣多」這個數學概念,通過演示(手),思維(腦),形成概念,符合實踐、認識,再實踐、再認識的規律。這比老師演示、學生看,老師講解、學生聽效果好,印象深、記憶牢。
4、從具體到抽象,揭示概念的本質
在教學中既要注意適應學生以形象思維為主的特點,也要注意培養他們的抽象思維能力。在概念教學中,要善於為學生創造條件,引導他們通過觀察、思考、探求概念的含義,沿著由感性認識到理性認識的認知過程去掌握概念。這樣,可以培養學生的邏輯思維能力。如圓周率這個概念比較抽象。一般教師都是讓學生通過動手操作認識圓的周長與直徑的關系,學生通過觀察、思考,分析,很快就發現不管圓的大小如何,每個圓的周長都是直徑的3倍多一點。教師指出:「這個倍數是個固定的數,數學上叫做「圓周率」。這樣,引導學生把大量感性材料,加以分析綜合,抽象概括拋棄事物非本質東西(如圓的大小,紙板的顏色,測量用的單位等)抓住事物的本質特徵(不論圓的大小,周長總是直徑的3倍多一點)。形成了概念。
5、用「變式」引導學生理解概念的本質
在學生初步掌握了概念之後,經常變換概念的敘述方法,讓學生從各個側面來理解概念。概念的表述方式可以是多種多樣的。如質數,可以說是「一個自然數除了1和它本身,不再有別的因數,這個數叫做質數。」有時也說成「僅僅是1和它本身兩個因數的倍數的數」。學生對各種不同的敘述都能理解,就說明他們對概念的理解是透徹的,是靈活的,不是死背硬記的。有時可以變概念的非本質特徵,讓學生來辨析,加深他們對本質特徵的理解。
6、對近似的概念加以對比
在小學數學中,有些概念的含義接近,但本質屬性有區別。例如:數位與位數、體積與容積,減少與減少到等等相對應概念,存在許多共同點與內在聯系。對這類概念,學生常常容易混淆,必須把它們加以比較,避免互相干擾。比較,主要是找出它們的相同點和不同點,這就要對進行比較的兩個概念加以分析,看各有哪些本質特點。然後把它們的共同點和不同點分別找出來,使學生既看到進行比較對象的內在聯系,又看到它們的區別。這樣,學的概念就會更加明確。對近似的概念經常引導學生進行比較和區分,既能培養學生對易混概念自覺地進行比較的習慣,也能提高學生理解概念的能力。多年來教學實踐的體會:重視培養學生的比較思想有幾點好處:(1)有利於培養學生思維的邏輯性。(2)有利於提高學生的分析問題的能力。(3)有利於培養學生系統化的思維方式。
5、教師要幫助學生總結歸納出概念的含義
教學中學生的主體地位是必要的,但教師在教學的全過程中的主導地位也不能忽視。教師應發揮好主導作用。教師與學生的主、客體地位是相互依存,在一定條件下又相互轉化。在概念教學中,教師要善於為學生創造條件,讓學生沿著觀察、思維、理解、表達的過程,由感性到理性的過程,由具體到抽象的過程去掌握概念。這樣極易調動學生的積極性、主動性,也可以教會學生去發現真理。

㈥ 如何加強小學數學的概念教學

在小學數學課中,根據教學內容可以劃分為概念課、計算課、解決問題課與空間圖形課,而幾乎在每一個新知識的起始課,學生最先接觸到的必然是數學概念。
數學概念是數學知識的「細胞」,是進行邏輯思維的第一要素。一切數學規則的研究、表達與應用都離不開數學概念。概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的,也是學習其他數學知識的基礎,因此上好概念課對小學生的後續學習以及數學素質發展的培養都具有很重要的意義。
一、概念引入的教學策略
兒童學習數學概念有一個學習准備的過程,這個過程就稱為「概念的引入」。良好有效的概念引入有助於學生積極主動地去理解和掌握概念。
概念引入的基本策略有:
1、生活實例引入
數學源於生活。結合生活實例引入概念是數學概念教學的一個有效途徑。它可以使數學由「陌生」變為「熟悉」,由」嚴肅」變為「親切」,從而使學生願意接近數學。例如:「直線和線段」的教學。可呈現四組鏡頭讓學生觀察。鏡頭一:媽媽織毛衣的場景,突出散亂在地上的繞來繞去的毛線。鏡頭二:斜拉橋上一根根斜拉的鋼索。鏡頭三:一個女孩打電話,用手指繞著彎彎曲曲的電話線。鏡頭四:建築工地上用繩子拴住重物往上拉的畫面,突出筆直的鋼絲繩。然後提問:「剛才你在屏幕上看到了什麼?你能給這些線分分類嗎?你有什麼辦法使這些線變直?」這些熟悉的生活現象不僅喚起了學生對生活的回憶,更激起了學生探索慾望,為學生提供了「做數學」的機會。
2、從直觀操作引入
組織學生動手操作,可使學生藉助動作思維,獲得鮮明的感知。如:教學「平均分」的概念,可先引導學生動手操作,把8個桃子分給2隻猴子,看看有幾種不同的分法。然後進行比較,說說你認為哪種分法最公平。從而使學生認識到:眾多的分法中有一種分法是與眾不同的,那就是每人分的同樣多,從而形成「平均分」的表象。
3、從舊知遷移引入
數學概念之間的聯系十分緊密,到了中高年級,許多概念可以通過聯系相關的舊概念直接引入。例如:「質數與和數」的教學。由於質數、和數是通過約數的個數來劃分的,所以在教學時,可以從復習約數的概念入手,然學生找出1、2、6、7、8、11、12、15的所有約數。在引導學生觀察比較,他們各有幾個約數?你能給出一個分類標准,把這些數分分類嗎?從而為引出質數、和數做好鋪墊。又如:「乘法」的概念可從「加法」來引入,「整除」的概念可從除法中的「除盡」來引入。
4、從情景設疑引入
豐富的情景不僅能激發學生的學習慾望,而且有利於學生主動觀察和積極思考,還有利於培養學生通過觀察發現並提出問題的能力。例如:關於「體積」概念的教學,可以先將兩個同樣的玻璃容器盛滿水,然後拿出兩個大小明顯不等的石塊,分別放進兩個玻璃容器中,讓學生觀察,出現了什麼現象,並想一想,為什麼石塊放進容器後,水要往外溢?為什麼放進較大石塊的容器,流出的水較多?從而讓學生獲得石塊佔有空間的感性認識,為引出「體積」做好了准備。
5、從動手計算引入
有些數學概念很難讓學生觀察或操作,但可以組織學生進行計算,使學生獲得感性認識。例如:「循環小數」概念的教學。可先讓學生進行小數除法計算,10/3,58.6/11。在計算過程中,學生會發現他們都除不盡,並且注意到當余數不斷重復出現時,商也不斷跟著重復出現,從而感知循環小數。
引進數學概念的方法較多,有時需要配合使用幾種方法才能收到良好的教學效果。
二、概念建立的教學策略
概念建立是概念教學的中心環節。小學生建立數學概念有兩種基本形式:一是概念的形成,二是概念的同化。由於小學生的思維特點處於由形象思維像抽象邏輯思維過度的階段,因此,小學生學習數學概念大多以「概念形成」的形式為主。數學概念的形成,一般要經過直觀感知---建立表象---解釋本質屬性三個過程。
1、強化感知
感知是人們認識事物的開始,沒有感知就不可能認識事物的本質和規律。因此在概念教學中,首先根據教學內容有目的、有計劃地向學生提供豐富的感性材料,引導學生觀察,並結合學生自己的動手操作,豐富感性認識,為概念形成做好准備。在組織學生進行感知活動時,要有意識地把感知的對象從背景中凸現出來,以便學生清晰地感知。同時,變靜止的為活動的,給學生留下清晰而深刻的印象。
2、重視表象
表象是人腦對客觀事物感知後留下的形象,是多層次感知的結果。表象接近感知,具有一定的具體性,同時又接近於概念,具有一定的抽象性,它起著從感知到概念的橋梁作用。建立表象,可以使學生逐步擺脫對直觀材料的依賴,克服感知中的局限性,為揭示概念的本質屬性奠定基礎。因此,在演示或操作結束後,不要急於進行概括,可以讓學生脫離直觀事例,默默地回想一下,喚起頭腦中的表象,並通過教師的引導,是表象有模糊到清晰,由分散到集中,進而過渡到抽象概括。如:在直觀感知黑板面、課桌面、課本面是長方形的基礎上,抽象出幾何圖形。
3、揭示本質屬性
在學生充分感知並形成表象後,教師要不失時機地引導學生進行分析、比較、綜合,概括出事物的本質屬性,並把這些本質屬性推廣到同類事物的全體,從而形成概念。
如:「三角形的認識」教學。首先讓學生說出日常生活中常見的三角形實物;接著在屏幕上出示三角旗、紅領巾、三角板等實物圖,提問這些物體都是什麼形狀?然後教師去掉圖中的顏色,只留下三個物體的外框,讓學生說說這三個圖形的相同點和不同點。舍棄這三種物體的顏色、大小、材料等非本質的東西,抽象出三角形的本著特徵:都是有三條線段組成的。接著教師出示三條線段,在屏幕上慢慢「圍成」一個三角形,形象地突出了「圍成」這一特徵,是學生准確理解:「由三條線段圍成的圖形叫三角形」。
4、深入理解概念的內涵和外延
當用定義把概念的本質屬性揭示出來時,學生對概念的理解還是膚淺的。因此,教師要採取一切手段幫助學生逐步理解概念的內涵和外延,以便學生在理解的基礎上掌握概念。一般可採取以下方法。
(1)析概念的關鍵性詞語。如在概括出分數的概念後,可進一步剖析:①單位「1」表示什麼意思?②「1」為什麼加引號?③「平均分」表示什麼意思?④「表示這樣的一份或幾份」是什麼意思?只有把這些觀念詞語的意思弄清楚了,才能對分數的概念有深刻的理解。
(2)利用概念的肯定例證和否定例證。肯定例證有利於概念的概括,否定例證有利於概念的辨別。因此教師不僅要充分運用肯定例證幫助學生正面理解概念的內涵,同時還及時運用否定例證促進學生對概念的辨析。如:學習了「循環小數」的概念後,可舉若干肯定例證和否定例證。
(3)運用變式突出概念的內涵與外延。「變式」是指本質屬性不變而非本質屬性發生變化。例如教學「三角形的高」時,當學生在標准圖形做出高之後,可出示變式圖形,然學生根據概念做出高。這樣即使「三角形的高」的內涵到強化,又使外延到充分揭示。如果只提供標准圖形,學生只會在標准圖形上做高,而不會再變式圖形上做高,這樣就會縮小「三角形的高」這一概念的外延。
三、概念鞏固的教學策略
學生對概念的掌握不是一次就能完成的,要由具體到抽象,再由抽象到具體多次往復。當學生初步建立概念後還需要運用多種方法,促進概念在學生認知結構中的保持,並通過不斷運用加深對概念的理解和記憶,使新建立的概念得以鞏固。
1、促進記憶
為了鞏固所獲得的新概念,首先需要記憶。教學中,我們必須遵循記憶的規律,指導學生對概念進行記憶。記憶有機械記憶、理解記憶。概念的機械記憶就是按概念在課本上的表述進行記憶。小學生機械記憶的能力一般比較強,但這種記憶如不及時上升到理解記憶,就很容易被遺忘,即使記住了也很難運用。概念的理解記憶是在明確了概念的內涵和外延,並使新概念和學生原有的知識經驗建立聯系後進行的記憶。
2、自舉實例
自舉實例就是讓學生把已獲得的概念簡單地運用於實際,通過實例來說明概念,來加深對概念的理解。有經驗的教師根據小學生通常帶有具體性的特點,在學生通過分析、綜合、抽象概括出概念以後,總是讓他們自舉例證,並把概念具體化。如在學生學習乘法的初步認識後,然學生找找生活中哪些問題可以用乘法解決。
3、強化應用
學生是否牢固地掌握了某個概念,不僅在於能否說出概念的名稱和定義,還在於能否正確地應用。通過應用可以家生理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。概念的內涵的應用有:①復述定義或根據定義填空;②根據定義判斷是非;③根據定義推理;④根據定義計算。概念外延的應用有:①舉例;②辨認肯定例證或否定例證,並說明理由;③按指定條件從概念的外延種選擇事例;④將概念按不同的標准分類。
4、注意辨析
隨著學習的深入,學生掌握的概念不斷增多,有些概念的文字表述相同,有些概念的內涵相近,學生容易混淆,如質數與互質數、整除與除盡、和數與偶數等。因此在概念的鞏固階段,要注意引導學生運用對比的方法,弄清易混淆概念的聯系與區別,以促使概念的精確分化。
總之,小學數學概念教學是小學數學教學的重要組成部分,教師在上概念課的時候一定要根據針對學生的認知規律以及概念的具體特點,採取科學的教學策略來開展教學工作,以保證數學概念教學的質量。在小學數學教學中,幫助學生逐步形成正確的數學概念,是課堂教學的一個重要任務。

㈦ 舉例說明小學數學概念形成的過程

根據數學概念學習的心理過程及特徵,數學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。

(一)數學概念的引入

數學概念的引入,是數學概念教學的第一個環節,也是十分重要的環節。概念引入得當,就可以緊緊地圍繞課題,充分地激發起學生的興趣和學習動機,為學生順利地掌握概念起到奠基作用。

引出新概念的過程,是揭示概念的發生和形成過程,而各個數學概念的發生形成過程又不盡相同,有的是現實模型的直接反映;有的是在已有概念的基礎上經過一次或多次抽象後得到的;有的是從數學理論發展的需要中產生的;有的是為解決實際問題的需要而產生的;有的是將思維對象理想化,經過推理而得;有的則是從理論上的存在性或從數學對象的結構中構造產生的。因此,教學中必須根據各種概念的產生背景,結合學生的具體情況,適當地選取不同的方式去引入概念。一般來說,數學概念的引入可以採用如下幾種方法。

1、以感性材料為基礎引入新概念。

用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為感性材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。

例如,要學習「平行線」的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然後分化出各例的屬性,從中找出共同的本質屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等,最後抽象出本質屬性,得到平行線的定義。

以感性材料為基礎引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特徵性質的事例,正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質屬性,形成概念。

2、以新、舊概念之間的關系引入新概念。

如果新、舊概念之間存在某種關系,如相容關系、不相容關系等,那麼新概念的引入就可以充分地利用這種關系去進行。

例如,學習「乘法意義」時,可以從「加法意義」來引入。又如,學習「整除」概念時,可以從「除法」中的「除盡」來引入。又如,學習「質因數」可以從「因數」和「質數」這兩個概念引入。再如,在學習質數、合數概念時,可用約數概念引入:「請同學們寫出數1,2,6,7,8,12,11,15的所有約數。它們各有幾個約數?你能給出一個分類標准,把這些數進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?」

3、以「問題」的形式引入新概念。

以「問題」的形式引入新概念,這也是概念教學中常用的方法。一般來說,用「問題」引入概念的途徑有兩條:①從現實生活中的問題引入數學概念;②從數學問題或理論本身的發展需要引入概念。

例如,在學習「平均數」時,教師可以先向學生呈現一個「幼兒園小朋友爭拿糖果」的生活情境,讓學生思考,為什麼有的小朋友很高興,有的小朋友很不高興?應該怎樣做才能使大家都高興?接下來應該怎麼做?這個幼兒園的老師可能會怎麼做?

4、從概念的發生過程引入新概念。

數學中有些概念是用發生式定義的,在進行這類概念的教學時,可以採用演示活動的直觀教具或演示畫圖說明的方法去揭示事物的發生過程。例如,小數、分數等概念都可以這樣引入。這種方法生動直觀,體現了運動變化的觀點和思想,同時,引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。

(二)數學概念的形成

引入概念,僅是概念教學的第一步,要使學生獲得概念,還必須引導學生准確地理解概念,明確概念的內涵與外延,正確表述概念的本質屬性。為此,教學中可採用一些具有針對性的方法。

1、對比與類比。

對比概念,可以找出概念間的差異,類比概念,可以發現概念間的相同或相似之處。例如,學習「整除」概念時,可以與「除法」中的「除盡」概念進行對比,去比較發現兩者的不同點。用對比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內涵,防止舊概念對學習新概念產生的負遷移作用的影響。

2、恰當運用反例。

概念教學中,除了從正面去揭示概念的內涵外,還應考慮運用適當的反例去突出概念的本質屬性,尤其是讓學生通過對比正例與反例的差異,對自己出現的錯誤進行反思,更利於強化學生對概念本質屬性的理解。

用反例去突出概念的本質屬性,實質是使學生明確概念的外延從而加深對概念內涵的理解。凡具有概念所反映的本質屬性的對象必屬於該概念的外延集,而反例的構造,就是讓學生找出不屬於概念外延集的對象,顯然,這是概念教學中的一種重要手段。但必須注意,所選的反例應當恰當,防止過難、過偏,造成學生的注意力分散,而達不到突出概念本質屬性的目的。

3、合理運用變式。

依靠感性材料理解概念,往往由於提供的感性材料具有片面性、局限性,或者感性材料的非本質屬性具有較明顯的突出特徵,容易形成干擾的信息,而削弱學生對概念本質屬性的正確理解。因此,在教學中應注意運用變式,從不同角度、不同方面去反映和刻畫概念的本質屬性。一般來說,變式包括圖形變式、式子變式和字母變式等。

㈧ 如何建立「數」的概念

培養孩子的邏輯思維能力時,可以將他引入一個數學的世界,對數學產生更多的興趣.這也可以通過一系列的游戲來達成,比如從數的量開始,一塊餅乾和五塊餅乾的實物對比不同;識圖認字的形式將數字書寫符號與念法結合起來;最後將數的量也就是幾塊餅乾和數字元號最終聯系在一起.數的概念必須一步一步引出,沒有捷徑,幼兒只有真正理解了其中的聯系,才能將概念聯繫到實物,再由實物抽象到概念,建立完整的數字概念,啟發孩子的數學興趣.

㈨ 如何在數的認識教學中幫助學生建立數的概念

老師們,數起源於數,數是被數出來的。量產生於量,那麼我們希望在這個過程中,大家能夠不斷地總結好的教學方法,讓學生體會到數不過如此,整數、小數、分數,他們都是在不斷的度量中來建立這些概念的,體會到整數、小數、分數它們的整體性和一致性。
老師們,藉助具體情境理解數的意義。沒有的情境怎麼辦?我說過了,語言直觀,參照物的借用,情景再現,把握核心概念,那些核心概念可像佛祖一樣要住在你的心中,不可以怠慢,它對認識數起著不可替代的作用。多種模型,剛才我介紹了這么多的模型,數位桶、計數單位、數線模型、面積模型、集合模型、分數牆模型等,注意動手操作。
另外,循序漸進,在這個過程當中不斷地去理解,在我們的課程標准解讀中特別提出了要重視數感的培養,數線就能夠幫助他做。
要整體把握教材之間的關系,要鼓勵學生進行數學的交流和數學的應用,這是我們課程標准解讀中給老師們提出的要求。

㈩ 如何指導小學生學習的數學數學概念

具體如下:
第一、富的實例,使學生充分感知。
在進行概念教學時,應使學生從各種情境中去接觸概念,以使其便於理解。例如:在導入一個新的概念時,最好使用大量的實物,事實和事例等,並必要的說明,使得有關的事物連續出現,相同的刺激重復出現,就易於區分哪些是重要的屬性,哪些是次要的屬性。
第二、抓概念的內涵和外延。
在教學中幫助學生建立清晰的概念,明確其內涵和外延,例如:「整除」這個概念著重指導學生抓住「數a除以數b,除得的商正好是整數而沒有餘數」這一內涵,在些基礎上,強調「相除的兩個數是自然數,商是整數而沒有餘數」這一外延,並且實例說明,這樣抓住念的內涵和外延教學就能讓學生真正掌握「整除」這一概念。
第三、用「變式」引導學生理解概念的本質。
在學生初步掌握了概念以後,可以變換概念的敘述方法,讓學生從不同的角度,各個方面來理解概念,概念的表述可以是多種多樣的,如講述「質數」這一概念時,可以說是「要個數除了1和它本身兩個約數經外,不再有別的約數,這個數叫做質數」有時也可以這樣說「只有被1和它本身兩個整除的數叫質數」。這樣學生對這同的敘述都能理解,說明他們對概念的理解是透徹的,是靈活的,不是死記硬背的。
第四、抓概念的實例的反例。
對於學生有些不易弄清的概念,先指導學生分析一些有關的概念的實例和反例,再與學生一起歸納總結出正確的概念,例如:「奇數與質數」、「偶數與合數」這幾組概念,可讓學生舉出若干實例,找出每組兩個數之間的聯系與區別,並出示一些判斷題,讓學生作出判斷,這樣學生經過了由正到反、由反到正的認識過程,有助於學生對概念的深化和理解。
第五、抓概念的本質屬性
例如:在教學「圓的認識」時,教師可以先提問學生:「日常生活中我們見到的哪些物體的形狀是圓形的?」學生在這一問題下,肯定爭先恐後的回答出老師所提出的問題,於是「圓」在學生的頭腦中已有了一定的形狀。這樣直觀形象地引進概念,為學生提供了適合概念的感性經驗,並引導學生發現其基本屬性。然後,教師在學生已經形成「圓」這一概念的基礎上出示這一概念的名詞,這樣學生更容易對這一類似概念的掌握

閱讀全文

與小學數學數的概念如何建立相關的資料

熱點內容
初中語文教師轉行能做什麼 瀏覽:163
有機合成材料有哪些初中化學 瀏覽:88
數學里ios是什麼意思 瀏覽:982
unity3d如何物理模擬 瀏覽:149
腐生微生物屬於生態系統的什麼 瀏覽:578
語文拼音26個字母怎麼拼 瀏覽:585
合肥師范學院數學與應用數學專業怎麼樣 瀏覽:556
安慶師范大學生物科學類如何分配 瀏覽:85
如何恢復刪除ps的歷史記錄 瀏覽:870
數學好是什麼思維好 瀏覽:381
肝癌是什麼原因引起的 瀏覽:98
黃金與哪些東西起化學反應 瀏覽:234
什麼牌子的眼霜好用 瀏覽:996
厚道是什麼意思 瀏覽:948
歷史專業畢業授予什麼碩士學位 瀏覽:568
高二生物學什麼難嗎 瀏覽:160
新疆師范大學生物專業在哪個校區 瀏覽:750
這是你的歷史書嗎用英語怎麼寫 瀏覽:230
天貓和淘寶有什麼區別 瀏覽:393
什麼是地理的論文免費下載 瀏覽:894