導航:首頁 > 生物信息 > 生物怎麼來的

生物怎麼來的

發布時間:2022-04-17 05:22:50

『壹』 地球上的生物是怎麼來的

地球生命源於陸地還是海洋,抑或由小行星從宇宙某個遙遠的地方攜帶而來?至今,有關地球生命的起源問題仍然是令科學家費盡心思的不解之謎。他們常常各持己見,莫衷一是。我們居住的行星大約形成於46億年前,從某種程度上說,在一個無法確定的時間,一定是發生了什麼情況,因為這顆毫無生氣的天體開始接納與岩石和水迥然不同的某些東西。氮和碳分子進化為DNA,一種微生物在宇宙星際間四處旅行……不容置疑的事實是,這種微小的分子出現數百萬年之後,原始的單細胞體誕生了,後來慢慢又出現了越來越復雜的水生生物,它們最終登陸陸地,從此各種生物在地球上大規模地繁衍並蔓延開來。
今天,地球上大約存在200萬種不同種類的生物。但所有種類的生物都發端於同一種物質——一種到某種程度時能啟動生命歷程的物質。這是一種什麼物質呢?本文將闡述有關地球生命的最新理論和最新研究成果。
在太空中游弋的一些天體的碎片猶如宇宙中的一夥「強盜」,遲早要沖撞某個天體。但是與地球發生碰撞的一些彗星和小行星,也許因此而成為地球生命的創造者。很有可能是一顆彗星(由岩石和冰構成的天體)把大量的水帶到地球,假若沒有水,地球可能永遠是一顆乾燥的行星。
義大利從事外空生物學研究的27個科研小組的協調員克里斯蒂亞諾·科斯莫維奇認為:「無論是生命的誕生還是進化,彗星和小行星肯定發揮了至關重要的作用。最近在小行星中發現了有機分子,也就是構成生物的分子。這些最新發現使人不得不再次重新考慮阿恆尼斯於1907年提出的胚種假說,這種假說認為,正是彗星和小行星這樣的天體在地球上播撒下生命的種子,這些天體有點像公共汽車,把有機物質,有時甚至是很復雜的物質,從太陽系的一顆行星運送到另一顆行星上,而且有人認為它們同時還帶來了細菌。」
但是,這位外空生物學家補充說,巨大無比的隕星也造成了真正的自然災難,真是禍從天降。「一方面,這些現象導致許多生物物種比如恐龍的滅絕,但恰恰也因此同時促進了生命形態的發展,例如恐龍的滅絕使哺乳動物繁衍得更快,然後是人類的興盛。」

『貳』 生物是怎麼來的

有原始海洋單細胞生物進化而來,先是異養再自養,當大氣中出現氧氣,進而有了臭氧層,則有了陸生生物,再進化到現代的生物。

『叄』 地球上的所有生物是怎麼形成的

最早出現的是生命之源--蛋白質.以後才有單細胞生命.最早的是微生物菌母.5億年前的陸地上,到處是光禿禿的山脈和大地,除了石頭就是沙子,沒有任何生命,也沒有生命賴以生存的土壤.直到4億2千5百萬年前,海藻才在地球大氣中積累了足夠的氧,形成臭氧層來保護暴露在陽光下的生命,生物才可能浮出水面.地球上最早的生命出現在45億年前.這時的生命是像細菌一樣的東西,它只有一個細胞,今天地球上所有的動植物都是由細胞組成的.在以後漫長的歲月中,這種單細胞的小生命遍布海洋,孤獨地生活了大約20億年.這時的地球上空曠、寂寞,空氣是有毒的,根本無法呼吸.大氣中沒有氧氣,也沒有保護生命的臭氧層,直射地面的強烈紫外線輻射只要一個小時就可以殺死絕大多數生命.大約7億年前,單細胞生物又演變成多細胞生物,就像今天的植物一樣,它們靠光合作用吸收二氧化碳,放出氧氣.這種只能在顯微鏡下才能看清的小生命,用了漫長的時間,讓地球大氣中充滿了氧氣.這樣,最早的地球生命就從簡單的單細胞生物進化成一些更復雜的生命.這是生命的重大突破.據某些專家推測,地衣是最早上岸的生命,正是由於地衣分解岩石,再加上自然的分化為後來登陸的生物打下一片天地,因為沒有土壤,任何其他陸地生命都是無法生存的.生命在進化過程中,前仆後繼地經營出了我們賴以生存的環境.生命第一次從海洋爬上陸地後,就不斷地開發新的棲息地,直至布滿地球上的每一個角落.在南極零下23攝氏度的嚴寒冰層中,有自在生活的藻類和真菌;在海底火山附近達到沸點的開水中,也有安詳生活的生命.已知生活在世界最低處的動物是一種像蟲子一樣的海洋生物;在珠穆朗瑪峰海拔6千米以上的地方也有生命存在.古老而浩盪的息粒,是地球古期最為單一的生命形式,生存期短促,約有半小時的時間,它們的游離性全憑著外力.暗灰色的息粒雖瞬生瞬死,但總量奇多,鋪天蓋地,充斥著廣袤的地表.息粒時代,是地球嬰兒般簡單,並且純潔的時代.肉眼難視的息粒放大來看,是一個水泡樣的單胞原體,在它身體邊緣有若干纖毛,能緩慢地扇動.它們始生於距今47億2千萬年前,蓬勃生發,持續了約一百萬年之久,在後四十餘萬年趨減至無.繼息粒之後,地球迎來了第二批絢麗的生命之花——微生物菌母.這是地球真正意義上的生命——微生物菌母,在息粒減滅期大量湧出,它們稱雄於天下的的時間,約三十萬年.

『肆』 生物是怎樣形成的

1. 對生命起源的早期猜想
從人類文明早期到十七世紀,自然發生學說一直占據著人們的主流思想——即認為生命物質是由無生命物質轉化的結果。就連極富盛名的大物理學家牛頓也認為,植物是由逐漸變弱了的慧星尾巴形成的。後來,Louis Pasteur通過巧妙的鵝頸瓶實驗證明了生物,即使是最簡單的細菌,都不能從無生命的物質中自發產生,生命只能來自生命。1870年,Thomas Henry Huxley提出了生源說:「生命始終來自先前已經存在的生命。」
然而,如果說生命來自於已存在的生命,那這個已存在的生命又從何而來呢?關於生命起源的問題——這個在自然發生論者看來不是問題的問題——生源說卻無法解決,所以生源說者經常會無賴地說:「生命是宇宙生來就固有的,你要問我生命從哪裡來的,你首先給我回答一個問題,宇宙怎麼起源的?物質怎麼來的?你給我回答了物質是怎麼來的,生命我就可以說是從哪兒來的。」因此,生源說其實是一個不可知論。
如果稍作比較,不難發現進化論與生源說其實面臨著同樣的難題——如果說高級生命是從低級的生命進化而來的,那麼是否存在最低級的生命形態?它又是如何產生的?達爾文巧妙地避開了對生命起源的討論才使得它不至於落入不可知論的泥淖,卻讓後世學者為他這不負責任的行為買單,經過幾代人的努力,最終形成了一套初步的不盡完整的理論——化學進化論。
2. 化學進化論
化學進化論是被廣大學者普遍接受的生命起源假說。這一假說認為,地球上的生命是在地球溫度逐步下降以後,在極其漫長的時間內,由非生命物質經過極其復雜的化學過程,一步一步地演變而成的。
原始大氣的主要成分有甲烷、氨、水蒸氣、氫等,此外還有硫化氫和氫氰酸。這些氣體在大自然不斷產生的宇宙射線、紫外線、閃電等的作用下,就可能自然合成氨基酸、核苷酸、單糖等一系列比較簡單的有機小分子物質。後來,地球的溫度進一步降低,這些有機小分子物質又隨著雨水,流經湖泊和河流,最後匯集在原始海洋中。
關於這方面的推測,已經得到了科學實驗的證實。1935年,美國學者S.L.Miller等人,設計了一套密閉裝置。他們將裝置內的空氣抽出,然後模擬原始地球上的大氣成分,通入甲烷、氨、氫、水蒸氣等氣體,並模擬原始地球條件下的閃電,連續進行火花放電,最後,在U型管內檢驗出有氨基酸生成。
米勒實驗證明了原始地球具備將無機物轉化為有機物的條件,隨後,原始地球條件下有機小分子如何進化到生物大分子便成為生命起源研究中新的實驗課題。1958年,美國人S.W.Fox模擬原始地球的條件,將一些氨基酸溶液混合後倒人160℃~200℃的熱沙或粘土中,使水分蒸發、氨基酸濃縮,經過0.5小時至3小時後就產生一種琥珀色的透明物質,它具有蛋白質的部分特性,因此被稱為類蛋白質。Fox等認為,在原始地球不斷有火山爆發的條件下,火山噴出氣體中的甲烷、氨氣和水蒸氣等可能在高溫條件下合成氨基酸,而氨基酸又可能通過熱聚合反應而縮合為多肽。此外,也有人用模擬實驗得到類似核酸的物質多聚核苷酸。實驗表明,在50℃~60℃時,只要有多聚膦酸酯的存在,單個的核苷酸就可以聚合為多聚核苷酸。這些實驗證明了有機小分子可以在原始地球上合成生物大分子如蛋白質,核酸等。飽含這種有機物的海洋環境成為了孕育生命的搖籃,被稱為「原始湯」。
然而,線索行至此卻突然模糊起來。關於有高分子物質如何成為了生命,我查閱了大量資料,絕大多數都是敷衍地說:「……生物大分子經過漫長的演化……終於形成了生命,然後進化……」的確,從無生命到有生命,這是地質史上一次質的飛躍,也是研究生命起源的一道難以跨越的鴻溝,目前,人類還不能在實驗室里重現這一過程,然而,現代生命科學的飛速發展也讓我們看到了零星的曙光,下面我將展示這些資料,以求盡量給讀者一個滿意的答案。
3. 「生命源於共同祖先」
區別非生物與生物主要有兩大特徵:1、新陳代謝,即能夠與環境進行物質和能量交換以維持其生長、運動和繁殖等生命活動過程。2、繁殖,即能夠進行無限次數的自我復制。只要滿足這兩個條件則可視之為生物。
《物種起源》中雖然沒有討論生命起源的問題,但達爾文還是忍不住說了一句:「生命起源於一個普遍具有高度保守性的遺傳信息片段,在相當廣的范圍內,通過不斷的復制和分化得以進化,地球上所有現存物種源於一個原始的共同祖先。」至於那個共同祖先是什麼東西,達爾文沒有說,也無法說明。
為了跨越無生命與有生命之間的那道鴻溝,我們就必須找到那個共同祖先——地球上最原始的生命體,它必須滿足上述兩個條件,而且比它低級的任何一種形態都不能全部滿足這兩個條件。對於這樣的生命體,可以確定,它早已滅絕,現存的化石記錄里也沒有,甚至我們很難在腦海里將其構造出來,不過,我們可以通過某些具體的信息向其逼近。
根據當代生物進化論研究者的觀點,地球上的所有生命都可以歸結到三個生物類群的某一類中。這三個類群分別是真核生物(Eukaryotes)、細菌(Eubacterial)和古菌(Archaea)。最近研究表明,細菌、古菌與真核生物很有可能源於同一個祖先,它是一種30億年或40億年前漂浮在「原始湯」周圍的「原胞」實體,這種實體被稱為「露卡(LUCA)」,也就是「第一個基本的共同祖先(Last universal common ancestor)」之意。然而,它沒有留下任何已知的化石,也沒有其他物理線索可揭示其身份。
但我們還是有蛛絲馬跡可尋的。首先,我們必須明白,作為一個祖先,「露卡」應該具備以下兩個特徵:1、年代最久遠。2、結構最簡單。其中「年代最久遠」是為了確保它的祖先地位,而「結構最簡單」是為了確保它能由生物大分子直接形成。這兩個特徵其實並不等價,在原始單細胞生物領域,並非越低級的生物結構越簡單,真核生物不一定比原核生物來得要晚(關於這一點我會在第4節說明)。而且在原始地球,退化的現象相當流行,突變即使令生物失去了某些結構,在生存競爭並不激烈的當時,它仍能生存繁衍。這一結論似乎給我們尋找同時滿足這兩個條件的「露卡」帶來困難。
雖難如此,科學家們還是通過基因組分析和實驗室模擬生成等巧妙的方法,初步描繪出「露卡」的肖像。
4. 基因組圖譜下的「露卡」肖像
基因是個好東西。通過構建基因組水平DNA、RNA 和蛋白質序列分析的技術平台,科學家們在生物分類、生物進化及生命起源等領域取得了傑出成就。
那麼,從基因分析中得到的「露卡」肖像又是怎樣的呢?
最早應用基因分析研究「露卡」的科學家是伊利諾斯大學分子生物學家Woese。20世紀60年代末,Woese發明了一種通過比較rRNA小節序列來測量物種間關系的方法。假設基因突變會隨著時間的推移自然增長,兩種物種的rRNA越是不同,它們分離的時間就越久。
Woese測定了200多種原核生物的16S rRNA 和真核生物的18S rRNA 的序列,發現在原核生物中實際上有第三種類型生物:古菌。盡管古菌與細菌在許多方面相似,但缺乏定義的肽脂糖,並且具有幾個真核細胞的特性。自此後,科學家採用一種新的分類系統,將生物分為三個域:古菌、細菌和真核生物。那麼,這三個域是以何種順序進化而來?換句話說,「露卡」更像細菌,古菌,還是真核生物?鑒於當時條件,Woese並未解答。如今,這個問題是否已得到解決?
20世紀80年代,科學家對rRNA所進行的進一步比較表明,細菌是最古老的域。這與我們的常識相一致,因為原核生物無論從那方面看都比真核生物簡單,甚至很多人認為細菌是通過融合、內共生、內吞作用、膜內陷等方式進化成真核生物的。並不是所有人都同意這一觀點,法國巴黎大學的帕特里克•福特勒教授就是其中一位主要反對者。福特勒教授指出,盡管真核生物更復雜,但它們也充斥著原始結構。例如,真核生物染色體包括成串線狀DNA,這需要一種稱為端粒的分子來保護其末梢在復制過程中不受損壞,而細菌染色體是環狀,所以不需要端粒來保護。
至於為什麼細菌在基因分析中表現得更古老,福特勒教授解釋說,基因分析方法本身存在一個重大缺陷:沒有將不同域的突變的不同速度考慮進去。與真核生物相比,細菌圓滑,在製造蛋白質方面效率更高,它們可以在幾秒鍾內就啟動蛋白質合成道路上的第一步,而同樣的生物進程真核生物需要半個小時,所以,在同一時段內細菌基因的變異會比真核生物大得多,因此單從基因分析得到結果來看,細菌等一些進化速度更快的直系後代看上去比實際要「老成」,造成細菌比真核生物古老的假象。
由於原始生命突變的速度難以確定且與突變本身有關,這一重大缺陷便使得基因分析的說服力大大下降。而最近發現的另一個重大缺陷又使堅持基因分析法的科學家們不得不轉變思維。
20世紀90年代,首批基因組排序計劃宣告完成,這使得研究人員能列出所有生命形式共同的基因。但令人吃驚的是,「生命樹」所有的基因數量結果卻相當少。例如,最新一項研究對100個物種進行了比較,結果只發現60個基因是普遍存在的。這種分析揭示的僅僅是哪些基因是原始的,而與這些基因「落戶」的物種沒有關系。由此科學家們意識到,基因可能在不同的物種間進行轉移。
基因平行轉移是比較基因組序列得到的一個令人震驚的結果。這說明原始細胞的所有組成成分很容易通過基因平行轉移的方式進行改變或取代,這或許是當時生命進化的主要動力,卻為基因分析帶來了更大的麻煩,基因的整合使生物的基因組變得雜亂無章,並且這種整合是隨機的,基因組的特徵便很難向我們表達它應該包含的信息。而我們要尋找的「露卡」位於這些原始生物的最低層,它的基因組早就被平行轉移摻和得面目全非,直接追溯「露卡」的基因組無疑困難重重。
然而,隨著細胞變得越來越復雜,這種平行轉移將逐漸減少,一旦到達某種臨界復雜程度,即細胞的各成分出現了高度的整合——稱為達爾文式閾值(Darwinian threshold)——基因的平行轉移將停止,基因組開始取決於遺傳,具有不同特徵的直系後代開始出現,這樣一來基因分析便頗具參考價值。於是,科學家們只好轉而研究達爾文閾值以上的生物的基因組,以此來推斷「露卡」的基因組成。
在尋找「露卡」的過程中,研究古細菌的基因組非常重要,因為古細菌的生長環境更接近原始地球的狀態。1996年,科學家們解析了從深海發現的古細菌物種詹氏甲烷球菌(Methanococcus jannaschii)的基因組全序列。這是第一個被分析的古細菌類生物的基因組,其主要的環狀染色體共有150萬對鹼基,含大約1700個基因。通過比較基因組研究,研究者推斷出「露卡」可能具備這樣一些特徵:蛋白質合成的裝置最為發達,但尚未完全;RNA合成的功能要比蛋白質合成差一些;而DNA合成的機制則基本沒有。此外,它具有較為發達的代謝途徑,包括氨基酸和核苷酸代謝,以及輔酶的合成等。
然而1700個基因對於「露卡」這位祖先來說似乎是太多了,「露卡」的結構必須盡量簡單以確保它能從無生命的形態直接演變而來。那麼,還有沒有更簡單的模型?
生殖道支原體(Mycoplasma genitalium)是一種寄生細菌,它的基因組是目前已測定的物種基因組中最小的一個,僅有468個基因。科學家將它的基因組與另外一種細菌流感嗜血桿菌(Haemophilus influenzae)的基因組序列進行了詳細的比較,發現有240個生殖道支原體基因與流感嗜血桿菌基因存在垂直同源性。經過進一步研究,科學家們得出結論「露卡」至少需要大約250個基因。
5. 「人工露卡」與多分子體系
「露卡」肖像的確定除了通過用計算手段比較基因組以外,另一個重要的途徑是採用實驗的手段。
其實上個世紀生物學界一直流行著一種尋找「最小基因組」的「游戲」,即找到那個包含最少基因卻又能剛好維持生命體生命活動的基因組序列。這一過程一般是在實驗室里完成,而所得到的那串基因組序列及其操控的生命體實際上反映了「露卡」的特徵,所以我們可以把這些生命體稱為「人工露卡」。
早在比較基因組方法出現之前,美國科學家M. Itaya就利用基因剔除方法,在細菌枯草芽孢桿菌(Bacillus subtilis)基因組上隨機敲除了79個基因,通過分析這些基因剔除品系是否存活來探討最小基因組,從而得到了第一個「人工露卡」。另一位著名的科學家C. Venter也採用基因剔除的辦法,對上一節所說的生殖道支原體的基因逐個進行敲除,並檢查其存活情況,最終得出結論,生殖道支原體有可能只需要265到350個基因就可以生存。
這個結果與比較基因組方法得到結果驚人地相似。Venter得到的「人工露卡」也許能很好地描述「露卡」的特徵,通過對這一「人工露卡」形態與生活史的進一步研究,一張「露卡」的肖像隱約浮現在了我們眼前:
(1)含有250到350個基因,不含內含子
(2)一套基本上完整的DNA復制系統
(3)一套進行DNA重組和修復的系統
(4)一個幾乎完整的轉錄、翻譯系統
(5)一組具有4個RNA聚合酶亞單位的轉錄裝置
(6)一組參與蛋白質折疊的分子伴侶蛋白
(7)一組蛋白質轉運機器
(8)完整的無氧中間代謝途徑
(9)一條輔酶合成途徑
(10)一種將生命體與周圍環境隔開的結構
這一套機制確保了生命體能夠繁殖、表達、遺傳、變異、進化以及代謝,這是對生命的基本要求,也是「露卡」最可能的模樣。我們不妨吧這一機制稱為「露卡機制」。
這也許很令人沮喪,因為「露卡」看起來也很復雜,我們很難想像生物大分子是如何形成這一機制的。那麼,還有沒有更簡單的模型?
我們以上討論的都是從已知物種出發由復雜向簡單逼近「露卡」的追溯過程,那麼,可不可以從生物大分子出發由簡單向復雜逼近「露卡」呢?
1924年,前蘇聯生物學家A.I.Oparin在實驗的基礎上提出團聚體學說(Coacervate Theory),認為生物大分子蛋白質和核酸的溶液混合在一起時可以形成團聚體,這種多分子體系表現出一定的生命現象。奧巴林將明膠(蛋白質)溶液與阿拉伯膠(糖)溶液兩種透明的溶液混合在一起,混合之後溶液變為混濁,顯微鏡下可以看到均勻的溶液中出現了小滴,即團聚體。用蛋白質、核酸、多糖、磷脂及多肽等溶液也能形成這樣的團聚體。這種團聚體直徑1—500微米,外圍可形成膜一樣的結構與周圍的介質分隔開來,能穩定存在幾個小時至幾星期時間,並表現出簡單的代謝、生長、增殖等生命現象。
20世紀60年代,美國人S.W.Fox提出了微球體學說(Microsphere Theory),強調了蛋白質在生命起源中的重要作用。他將於燥的氨基酸粉末混合加熱後在水中形成了類蛋白微球體,並把它看成是原始細胞的模型。這種微球體直徑較均一,在1—2微米之間,相當
圖2 團聚體(右)與微球體(左)
Fig.2 Coacervate(right) and microsphere(left)
於細菌的大小。它表現出很多生命特徵:其表面具有雙層膜,能隨著介質的滲透壓變化而膨
脹或收縮;能吸收溶液中的類蛋白質而生長,並能像細菌那樣進行繁殖;在電子顯微鏡下還
可以觀察到它具有類似於細菌的超微結構。
這種團聚體或微球體統稱為「多分子體系」,那麼,多分子體系是否就是「露卡」呢?答案是否定的。多分子體系雖然能夠進行簡單的代謝、生長和增殖等生命活動,但是它與真正意義上的生命還是有本質的區別的,因為它沒有完整的「露卡機制」,它不能完成核酸的復制、轉錄與翻譯。也就是說,它雖然能簡單地分裂形成多個個體,但卻不能將其性狀遺傳下去,不能遺傳倒沒什麼,但是不能遺傳也就意味著不能進化,作為一種不能進化的「生物」,它完全沒有資格擁有「祖先」這個稱號。「露卡」與其本質的區別就在於它已經具備了這套機制,它能夠進化。
多分子體系雖然還不能成為「露卡」,但它的發現還是有其意義的,它揭示了生物大分子之間能夠相互作用形成具有生命活力的分子團,如果說「露卡」理論是從上往下逼近了達爾文所言的「共同祖先」,那麼「多分子體系」理論則是從下往上向其逼近。好,我們的鴻溝變窄了,現在只剩下一個問題:「露卡機制」是如何產生的?
對於這一問題,我只能說,「露卡機制」的產生是一個謎,現代科學在這方面的研究收效甚微,不但如此,我們的科學越是發展,我們對DNA復制、轉錄和翻譯的機制知道得越多,我們越是對它那高度的精確與智能百思不得其解。即使到目前,如果我們仍相信進化論,我們也只能說,它是多分子體系在「漫長的演化」中逐漸形成的。

『伍』 生物是咋來的

生命的起源即生物進化中的化學進化階段。宇宙大爆炸產生了構成生命的主要元素——碳,氫,氧,氮,磷,硫等。即元素演化。下面進入前化學進化歷程:1:無機小分子到有機小分子。(1953年,米勒設計精巧實驗,成功將甲烷,氨等轉化為有機小分子,其中包括11種氨基酸)2:從有機小分子到生物大分子(主要指核酸和蛋白質)
(1)陸相起源派:小分子聚合成大分子在火山口等局部高溫地區發生,大分子經雨水沖入海洋。
(2)海相起源派:原始海洋中,氨基酸,核苷酸可附著在粘土等物質的活性表面,在有適當縮合劑的條件下發生聚合反應生成生物大分子。
3:生物大分子生成多分子體系(團聚體模型,微球體模型)
4:RNA界:生命起源歷程中存在一段RNA為主體的時代,即RNA界。
5:細胞前體出現:約47億年前,出現最早的生命,細胞前體。
6:細胞前體後形成細胞膜,進化為原始細胞。原始細胞進化為前原核細胞。原核細胞進化為真核細胞。
生物進化認為生物是從無性生殖到有性生殖,從單細胞生物到多細胞生物,從水生到陸生。

『陸』 生物是怎樣形成的

原始大氣主要成分為:甲烷,氨氣等,在閃電和高溫下生成了氨基酸。後來地球冷卻下來,氨基酸就結合成了蛋白質,蛋白質和核酸相互作用,就有了病毒。如果蛋白質和水,油脂,無機鹽等相互作用,就有了具有基本生命功能的原始細胞。原始細胞逐漸演化成了後來的單細胞生物,又逐漸產生了一些高等生物。經過上億年的演化才有了人。現在的地球已沒有了原始的球的條件,不能再由基本物質產生生物,所以現在的生物都是由原有的生物繁殖的。不同的生物為了適應條件,會有不同的器官,有的甚至沒有器官。

『柒』 生物如何誕生的

生命的起源
地球在宇宙中形成以後,開始是沒有生命的。經過了一段漫長的化學演化,就是說大氣中的有機元素氫、碳、氮、氧、硫、磷等在自然界各種能源(如閃電、紫外線、宇宙線、火山噴發等等)的作用下,合成有機分子(如甲烷、二氧化碳、一氧化碳、水、硫化氫、氨、磷酸等等)。這些有機分子進一步合成,變成生物單體(如氨基酸、糖、腺甙和核甙酸等)。這些生物單體進一步聚合作用變成生物聚合物。如蛋白質、多糖、核酸等。這一段過程叫做化學演化。蛋白質出現後,最簡單的生命也隨著誕生了。這是發生在距今大約36億多年前的一件大事。從此,地球上就開始有生命了。生命與非生命物質的最基本區別是:它能從環境中吸收自己生活過程中所需要的物質,排放出自己生活過程中不需要的物質。這種過程叫做新陳代謝,這是第一個區別。第二個區別是能繁殖後代。任何有生命的個體,不管他們的繁殖形式有如何的不同,他們都具有繁殖新個體的本領。第三個區別是有遺傳的能力。能把上一代生命個體的特性傳遞給下一代,使下一代的新個體能夠與上一代個體具有相同或者大致相同的特性。這個大致相同的現象最有意義,最值得我們注意。因為這說明它多少有一點與上一代不一樣的特點,這種與上一代不一樣的特點叫變異。這種變異的特性如果能夠適應環境而生存,它就會一代又一代地把這種變異的特性加強並成為新個體所固有的特徵。生物體不斷地變異,不斷地遺傳,年長月久,周而復始,具有新特徵的新個體也就不斷地出現,使生物體不斷地由簡單變復雜,構成了生物體的系統演化。
地球上早期生命的形態與特性。地球上最早的生命形態很簡單,一個細胞就是一個個體,它沒有細胞核,我們叫它為原核生物。它是靠細胞表面直接吸收周圍環境中的養料來維持生活的,這種生活方式我們叫做異養。當時它們的生活環境是缺乏氧氣的,這種喜歡在缺乏氧氣的環境中生活的叫做厭氧。因此最早的原核生物是異養厭氧的。它的形態最初是圓球形,後來變成橢圓形、弧形、江米條狀的桿形進而變成螺旋狀以及細長的絲狀,等等。從形態變化的發展方向來看是增加身體與外界接觸的表面積和增大自身的體積。現在生活在地球上的細菌和藍藻都是屬於原核生物。藍藻的發生與發展,加速了地球上氧氣含量的增加,從20多億年前開始,不僅水中氧氣含量已經很多,而且大氣中氧氣的含量也已經不少。細胞核的出現,是生物界演化過程中的重大事件。原核植物經過15億多年的演變,原來均勻分散在它的細胞裡面的核物質相對地集中以後,外麵包裹了一層膜,這層膜叫做核膜。細胞的核膜把膜內的核物質與膜外的細胞質分開。細胞裡面的細胞核就是這樣形成的。有細胞核的生物我們把它稱為真核生物。從此以後細胞在繁殖分裂時不再是簡單的細胞質一分為二,而且裡面的細胞核也要一分為二。真核生物(那時還沒有動物,可以說實際上也只是真核植物)大約出現在20億年前。性別的出現是在生物界演化過程中的又一個重大的事件,因為性別促進了生物的優生,加速生物向更復雜的方向發展。因此真核的單細胞植物出現以後沒有幾億年就出現了真核多細胞植物。真核多細胞的植物出現沒有多久就出現了植物體的分工,植物體中有一群細胞主要是起著固定植物體的功能,成了固著的器官,也就是現代藻類植物固著器的由來。從此以後開始出現器官分化,不同功能部分其內部細胞的形態也開始分化。由此可見,細胞核和性別出現以後,大大地加速了生物本身形態和功能的發展。
生命的起源
關於生命起源的問題,很早就有各種不同的解釋。近幾十年來,人們根據現代自然科學的新成 就,對於生命起源的問題進行了綜合研究,取得了很大的進展。
根據科學的推算,地球從誕生到現在,大約有46億年的歷史。早期的地球是熾熱的,地球上的一切元素都呈氣體狀態,那時候是絕對不會有生命存在的。最初的生命是在地球溫度下降以後,在極其漫長的時間內,由非生命物質經過極其復雜的化學過程,一步一步地演變而成的。目前,這種關於生命起源是通過化學進化過程的說法已經為廣大學者所承認,並認為這個化學進化過程可以分為下列四個階段。
從無機小分子物質生成有機小分子物質 根據推測,生命起源的化學進化過程是在原始地球條件下開始進行的。當時,地球表面溫度已經降低,但內部溫度仍然很高,火山活動極為頻繁,從火山內部噴出的氣體,形成了原始大氣(下圖)。一般認為,原始大氣的主要成分有甲烷(CH4)、氨 原始地球的想像圖
(左)原始大氣(右)有機物形成
(NH3)、水蒸氣(H2O)、氫(H2),此外還有硫化氫(H2S)和氰化氫(HCN)。這些氣體在大自然不斷產生的宇宙射線、紫外線、閃電等的作用下,就可能自然合成氨基酸、核苷酸、單糖等一系列比較簡單的有機小分子物質。後來,地球的溫度進一步降低,這些有機小分子物質又隨著雨水,流經湖泊和河流,最後匯集在原始海洋中。
關於這方面的推測,已經得到了科學實驗的證實。1935年,美國學者米勒等人,設計了一套密閉裝置(下圖)。他們將裝置內的空氣抽出,然後模擬原始地球上的大氣成分,通入甲烷、氨、氫、水 米勒實驗的裝置
蒸氣等氣體,並模擬原始地球條件下的閃電,連續進行火花放電。最後,在U型管內檢驗出有氨基酸生成。氨基酸是組成蛋白質的基本單位,因此,探索氨基酸在地球上的產生是有重要意義的。
此外,還有一些學者模擬原始地球的大氣成分,在實驗室里製成了另一些有機物,如嘌識、嘧啶、核糖,脫氧核糖,脂肪酸等。這些研究表明:在生命的起源中,從無機物合成有機物的化學過程,是完全可能的。
從有機小分子物質形成的有機高分子物質 蛋白質、核酸等有機高分子物質,是怎樣在原始地球條件下形成的呢?有些學者認為,在原始海洋中,氨基酸、核苷酸等有機小分子物質,經過長期積累,相互作用,在適當條件下(如吸附在粘土上),通過縮合作用或聚合作用,就形成了原始的蛋白質分子和核酸分子。
現在,已經有人模擬原始地球的條件,製造出了類似蛋白質和核酸的物質。雖然這些物質與現在的蛋白質和核酸相比,還有一定差別 ,並且原始地球上的蛋白質和核酸的形成過程是否如此,還不能肯定,但是,這已經為人們研究生命的起源提供了一些線索;在原始地球條件下,產生這些有機高分子的物質是可能的。
從有機高分子物質組成多分子體系 根據推測,蛋白質和核酸等有機高分子物質,在海洋里越積越多,濃度不斷增加,由於種種原因(如水分的蒸發,粘土的吸附作用),這些有機高分子物質經過濃縮而分離出來,它們相互作用,凝聚成小滴。這些小滴漂浮在原始海洋中,外麵包有最原始的界膜,與周圍的原始海洋環境分隔開,從而構成一個獨立的體系,即多分子體系。這種多分子體系已經能夠與外界環境進行原始的物質交換活動了。
從多分子體系演變為原始生命 從多分子體系演變為原始生命,過是生命起源過程中最復雜和最有決定意義的階段,它直接涉及到原始生命的發生。目前,人們還不能在實驗室里驗證這一過程。不過,我們可以推測,有些多分子體系經過長期不斷地演變,特別是由於蛋白質和核酸這兩大主要成分的相互作用,終於形成具有原始新陳代謝作用和能夠進行繁殖的原始生命。以後,由生命起源的化學進化階段進入到生命出現之後的生物進化階段。
關於生命起源的化學進化過程的研究,雖然進行了大量的模擬實驗,但是絕大多數實驗只是集中在第一階段,有些階段還僅僅限於假說和推測。因此,在對於生命起源,問題還必須繼續進行研究和探討。
蛋白質和核酸是生物體內最重要的物質。沒有蛋白質和核酸,就沒有生命。1965年,我國科學工作者人工合成了結晶牛胰島素(一種含有51個氨基酸的蛋白質)。1981年,我國科學工作者又用人工的方法合成了酵母丙氨酸轉運核糖核酸(核糖核酸的一種)。這些工作反映了我國在探索生命起源問題上的重大成就。
____來自網路

『捌』 生物是怎麼來的

在遠古時候,地球上有大量水,大氣含量主要是甲烷


水蒸氣,這些氣體在遇到閃電時產生化學反應,產生了生命最基本的物質----氨基酸,生命就此產生,後來由於進化,由水生到陸生,由低等到高等,直至今天.
以地球生命演化的例子:
一。
有觀點認為是由外星天體撞擊地球後,該天體上的有機分子就降生到地球上。而該天體上的有機物產生的過程大致跟下面倆機理一樣。

地球上的氧、氮、氫、碳等元素在太陽的紫外線和暴雷的作用下,形成了蛋白質;又很巧合的是地球正好處在距離太陽的適當距離,所以有了生命。在接著生命受到環境的約束而進一步進化。然後經過N億年的進化,人類就產生了。。

在數十億年前,地球天氣的含氧量比現在少得多,火山噴發時所生成的蘑菇的溫度比現在高大約200攝氏度。這種條件非常有利於蘑菇雲中的多種物質之間發生更加復雜的化學反應,合成有機聚合物和氨基酸。這些物質在落到地面,並經過多年的相互作用後,便可合成具有自我復制能力的核糖核酸分子,從而使原始細胞的出現成為可能。

『玖』 生物怎麼來的

答:
地球上最原始的生物實際上就是RNA,這比任何原核細胞拉,真核細胞拉都要早,
總而言之來之於地球當時環境中的化學反應.
地球生命的形成
在40億年前的地球水環境中,原子組合成分子,形成新的四力平衡體,而且地球在形成過程中,已聚合了極多的星際有機分子,這些分子組合成大分子,利用彼此的引力場和反引力場來尋找合適的組合對象。大分子、分子、原子三間也是依靠彼此形成的力場來尋找合適的組合對象,形成新的復雜四力平衡體,其中引力場起到遠距吸引作用(5-20個原子直徑),這也就限制了大分子在大范圍獲得所需的組合對象,因此大分子彼此組合成一種能移動的組織形式,即最原始的海洋微生物。能移動的大分子團主要採用定向釋放電磁力的方法,逐漸發展成能在水中游動的原始組織,因此它們能獲得大量所需的食物(四力平衡體),並在體內積存了一些分子,這些分子在原始微生物母體力場導引下,組合成與母體相似的新微生物,這些原始微生物實質上就是一些復雜大分子團形成的四力平衡體,這也是生物基因復制的雛形。
這些大分子團還不是現代意義上的蛋白質與核酸的聚合體,只是多種氨基酸、核苷、磷酸、碳水化合物及其它一些有機小分子的無序聚合體,當核苷和磷酸組成成核苷酸,並逐漸形成核苷酸鏈,這些核苷酸鏈形成的力場就對周邊的氨基酸形成力場束縛作用,進而組裝出肽鏈。或者先由多種氨基酸組合成肽鏈所形成的力場對周邊的核苷酸形成力場束縛作用,進而組裝出核苷酸鏈,隨著形成的肽鏈和核苷酸鏈越來越長,分子量越來越大,最終形成核酸和蛋白,核酸與蛋白的形成是彼此相互作用的產物,是同時產生的。
筆者認為,如果融合奧巴林的團聚體理論、福克斯的類蛋白微球理論和趙玉芬的「核酸與蛋白共同起源」理論,就能較清楚解釋地球有機生命的起源。
上述「大分子團」就相當於團聚體或類蛋白微球,只不過其中有機物成分更復雜一些,除了多種氨基酸外,還有構成核苷酸鏈的組件(核苷、磷酸)及一些如碳水化合物之類的有機分子。
有機生命的產生過程大致分為三步:先是原始地球簡單的無機化合物形成原始的有機物質(碳氫化合物及其最簡單的衍生物),二是在第一步基礎上,逐漸發展為復雜的有機化合物(糖、核苷酸、氨基酸)和它們的聚合物多糖、核酸和蛋白質,以及其它有機物質,三是隨著地球上自然條件的演變,上述物質進行復雜的相互作用,最後產生具有新陳代謝特徵、能生長、繁殖、遺傳、變異的原始的有機生物。

『拾』 地球上的生物是怎麼來的

38億年前,地球誕生7億年後,水覆蓋了地表,但不只是水,水中還有小島,熔岩噴出海面,形成島嶼。大氣中有毒,溫度很高。隕石溶解,釋放出碳和氨基酸。海底煙囪,但冒出來的不是煙,水變成了化學溶液,這些化學物質結合起來創造了生命,水裡充滿了單細胞細菌,微生物從此出現了!

閱讀全文

與生物怎麼來的相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:445
乙酸乙酯化學式怎麼算 瀏覽:1117
沈陽初中的數學是什麼版本的 瀏覽:1027
華為手機家人共享如何查看地理位置 瀏覽:753
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:592
數學c什麼意思是什麼意思是什麼 瀏覽:1082
中考初中地理如何補 瀏覽:1032
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:461
數學奧數卡怎麼辦 瀏覽:1060
如何回答地理是什麼 瀏覽:784
win7如何刪除電腦文件瀏覽歷史 瀏覽:824
大學物理實驗干什麼用的到 瀏覽:1170
二年級上冊數學框框怎麼填 瀏覽:1380
西安瑞禧生物科技有限公司怎麼樣 瀏覽:528
武大的分析化學怎麼樣 瀏覽:960
ige電化學發光偏高怎麼辦 瀏覽:1056
學而思初中英語和語文怎麼樣 瀏覽:1280
下列哪個水飛薊素化學結構 瀏覽:1118
化學理學哪些專業好 瀏覽:1204
數學中的棱的意思是什麼 瀏覽:737