導航:首頁 > 生物信息 > 生物體內硬脂酸在哪裡合成

生物體內硬脂酸在哪裡合成

發布時間:2022-04-15 01:09:07

Ⅰ 脂肪酸的合成過程


脂肪酸的生物合成

biosynthesis
of
fattyacids
高級脂肪酸的合成,以乙醯CoA為基礎,通過乙醯輔酶A羧化酶的作用,在ATP的分解的同時與CO
2
結合,產生丙二酸單醯CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單醯CoA與乙醯CoA一起,在脂肪酸合成酶的催化下合成C
16
的軟脂酸(或C
18
的硬脂酸),但這是包括在醯基載體蛋白(ACP)參與下的脫羧、C2單位縮合、以及由NADPH還原過程在內的反復進行的復雜過程。產生的脂肪酸作為CoA衍生物,在線粒體中與乙醯CoA,在微粒體中與丙二酸單醯CoA縮合,每次增加兩個碳,不斷延長碳鏈。而單不飽和脂肪酸,由飽和醯基CoA(或ACP)的好氧的不飽和化(微粒體,微生物等。必須有O
2
和NADH)而產生,或由脂肪酸生物合成途中的β-羥醯ACP的脫水反應(及碳鍵延長)而產生。多聚不飽和脂肪酸在高等動物不一定產生,可以從攝取的不飽和酸的碳素鏈的延長等而轉變形成。另外環丙烷脂肪酸由S-腺苷甲硫氨酸的C
1
,結合於不飽和酸的雙鍵上而產生。脂肪酸作為CoA衍生物,用於合成各種底物。

Ⅱ 硬脂酸化學式

硬脂酸,化學式:CH₃(CH₂)₁₆COOH。

軟脂酸,化學式:C₁₆H₃₂O₂。

油酸,化學式:C₁₈H₃₄O₂。

硬脂酸是自然界廣泛存在的一種脂肪酸,幾乎所有油脂中都有含量不等的硬脂酸,在動物脂肪中的含量較高,如牛油中含量可達24%,植物油中含量較少,茶油為0.8%,棕櫚油為6%;

但可可脂中的含量則高達34%。工業硬脂酸的生產方法主要有分餾法和壓榨法兩種。在硬化油中加入分解劑,然後水解得粗脂肪酸,再經水洗、蒸餾、脫色即得成品。同時副產甘油。

軟脂酸是第一種從脂肪生成中產生的脂肪酸,亦可以由它產生更長的脂肪酸。軟脂酸合成其他物質,軟脂酸鹽對乙醯輔酶A羧化酶有負面反應,而乙醯輔酶A羧化酶可以催化乙醯輔酶A 生成丙二酸單醯輔酶A 的羧化作用。

純油酸為無色油狀液體,有動物油或植物油氣味,久置空氣中顏色逐漸變深,工業品為黃色到紅色油狀液體,有豬油氣味。

(2)生物體內硬脂酸在哪裡合成擴展閱讀

軟脂酸的生成:

乙醯CoA可由糖氧化分解或由脂肪酸、酮體和蛋白分解生成,生成乙醯CoA的反應均發生在線粒體中,而脂肪酸的合成部位是胞漿,因此乙醯CoA必須由線粒體轉運至胞漿。

但是乙醯CoA不能自由通過線粒體膜,需要通過一個稱為檸檬酸—丙酮酸循環(citrate pyruvate cycle)來完成乙醯CoA由線粒體到胞漿的轉移。

首先在線粒體內,乙醯CoA與草醯乙酸經檸檬酸合成酶催化,縮合生成檸檬酸,再由線粒體內膜上相應載體協助進入胞液,在胞液內存在的檸檬酸裂解酶(citrate lyase)可使檸檬酸裂解產生乙醯CoA及草醯乙酸。

前者即可用於生成脂肪酸,後者可返回線粒體補充合成檸檬酸時的消耗。但草醯乙酸也不能自由通透線粒體內膜,故必須先經蘋果酸脫氫酶催化,還原成蘋果酸再經線粒體內膜上的載體轉運入線粒體,經氧化後補充草醯乙酸。

也可在蘋果酸酶作用下,氧化脫羧生成丙酮酸,同時伴有NADPH的生成。丙酮酸可經內膜載體被轉運入線粒體內,此時丙酮酸可再羧化轉變為草醯乙酸。

每經檸檬酸丙酮酸循環一次,可使一分子乙酸CoA由線粒體進入胞液,同時消耗兩分子ATP,還為機體提供了NADPH以補充合成反應的需要。

Ⅲ 硬脂酸如何製取,有哪些用途

製取或來源主要由油脂水解法進行工業生產。
硬脂酸以甘油酯的形式存在於動物脂仿、油以及一些植物油中,這些油經水解即得硬脂酸。硬脂酸是自然界廣泛存在的一種脂肪酸,幾乎所有油脂中都有含量不等的硬脂酸,在動物脂肪中的含量較高,如牛油中含量可達24%,植物油中含量較少,茶油為0.8%,棕櫚油為6%,但可可脂中的含量則高達34%。
工業硬脂酸的生產方法主要有分餾法和壓榨法兩種。在硬化油中加入分解劑,然後水解得粗脂肪酸,再經水洗、蒸餾、脫色即得成品。同時副產甘油。
用途主要用於生產硬脂酸鹽:硬脂酸鈉
硬脂酸鎂
硬脂酸鈣
硬脂酸鉛
硬脂酸鋁
硬脂酸鎘
硬脂酸鐵
硬脂酸鉀
廣泛用於制化妝品、塑料耐寒增塑劑、脫模劑、穩定劑、表面活性劑、橡膠硫化促進劑、防水劑、拋光劑、金屬皂、金屬礦物浮選劑、軟化劑、醫葯品及其他有機化學品。另外,還可用作油溶性顏料的溶劑、蠟筆調滑劑、蠟紙打光劑、硬脂酸甘油脂的乳化劑等。
塑料行業硬脂酸廣泛應用於PVC塑料管材、板材、型材、薄膜的製造。是PVC熱穩定劑,具有很好的潤滑性和較好的光、熱穩定作用。在塑料PVC管中,硬脂酸有助於防止加工過程中的焦化,在PVC薄膜加工中添加是一種有效的熱穩定劑,同時可以防禦暴置於硫化物中所引起的成品薄膜變色。
橡膠工業硬脂酸在橡膠的合成和加工過程中起重要作用。硬脂酸是天然膠、合成橡膠和膠乳中廣泛應用的硫化活性劑,也可用作增塑劑和軟化劑。在生產合成橡膠過程中需加硬脂酸作乳化劑,在製造泡沫橡膠時,硬脂酸可作起泡劑,硬脂酸還可用作橡膠製品的脫模劑。
化妝品工業硬脂酸用於雪花膏和冷霜這兩類護膚品中起乳化作用,從而使其變成穩定潔白的膏體。硬脂酸還是製造杏仁蜜和奶液的主要原料。硬脂酸皂酯類在化妝品工業中用途更為廣泛。

Ⅳ 脂肪酸聚酮酚萜類生物鹼類生物合成路徑

脂肪酸的生物合成分三步:1,脂肪酸合成的原料及轉運,2,乙醯coa羧化產生丙二酸單醯coa,3,軟脂酸的合成。生物鹼的合成途徑是氨基酸途徑。
脂肪酸合成的場所在肝、腎,腦、肺、乳腺及脂肪等組織的細胞胞液中進行,因為脂肪酸合成酶系存在於此。
脂肪酸可分成兩類:一類是分子內不帶碳碳雙鍵的飽和脂肪酸,如硬脂酸;另一類是分子內帶有一個或幾個碳碳雙鍵的不飽和脂肪酸,最常見的有油酸。

Ⅳ 脂肪酸的生物合成

這個在你的生化書中應該有吧。
脂肪酸合成的起始原料是乙醯CoA,它主要來自糖酵解產物丙酮酸,脂肪酸的合成是在胞液中。
先說說飽和脂肪酸的合成:
1.乙醯輔酶A的轉運:脂肪酸的合成是在胞液中,而乙醯CoA是在線粒體內,它們不能穿過線粒體內膜,需通過轉運機制進入胞液。三羧酸循環中的檸檬酸可穿過線粒體膜進入胞液,然後在檸檬酸裂解酶的作用下放出乙醯CoA進入脂肪酸合成途徑。
2.丙二酸單醯CoA的合成:脂肪酸的合成是二碳單位的延長過程,它的來源不是乙醯CoA,而是乙醯CoA的羧化產物丙二酸單醯CoA,這是脂肪酸合成的限速步驟,催化的酶是乙醯CoA羧化酶。
3.乙醯ACP和丙二酸單醯-ACP的合成:乙醯CoA和丙二酸單醯CoA首先與ACP活性基團上的巰基共價連接形成乙醯ACP和丙二酸單醯-ACP。
4.合成步驟:(這個好麻煩)總之就是每延長2個C原子,需經縮合、還原、脫水、還原四部反應。
5.脂肪酸的延長:在真核生物中,貝塔-酮脂醯-ACP縮合酶對鏈長又專一性,它就收14碳醯基的活力最強,所以大多數情況下僅限於合成軟脂酸。
不飽和脂肪酸的合成:
它的合成是在去飽和酶系的作用下,在以合成的飽和脂肪酸中引入雙鍵的過程,這是在內質網膜上進行的氧化反應,需要NADH和分子氧的參加。軟脂酸和硬脂酸是動物組織中兩種最常見的飽和脂肪酸,是棕櫚油酸和油酸的前體,是在C-9和C-10間引入順式雙鍵形成的。總之,酶系和能量起了很重要的作用。

Ⅵ 脂質在哪裡合成

對於真核生物,脂質合成是在光面內質網上,因為脂質合成的酶類位於光面內質網;

對於原核生物,紙質合成是在細胞質基質中,因為脂質合成的酶類位於細胞質基質。

這與呼吸作用是類似的。真核生物在線粒體;原核生物在細胞質基質。也是因為呼吸酶的分布不同。

生物合成:

1、脂肪酸

脂肪酸的生物合成biosynthesis of fattyacids 高級脂肪酸的合成,以乙醯CoA為基礎,通過乙醯輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單醯CoA,開始這一階段是控速步驟,為檸檬酸所促進。

丙二酸單醯CoA與乙醯CoA一起,在脂肪酸合成酶的催化下合成C16的軟脂酸(或C18的硬脂酸),但這是包括在醯基載體蛋白(ACP)參與下的脫羧、C2單位縮合、以及由NADPH還原過程在內的反復進行的復雜過程。

產生的脂肪酸作為CoA衍生物,在線粒體中與乙醯CoA,在微粒體中與丙二酸單醯CoA縮合,每次增加兩個碳,不斷延長碳鏈。

而單不飽和脂肪酸,由飽和醯基CoA(或ACP)的好氧的不飽和化(微粒體,微生物等。必須有O2和NADH)而產生,或由脂肪酸生物合成途中的β-羥醯ACP的脫水反應(及碳鍵延長)而產生。

多聚不飽和脂肪酸在高等動物不一定產生,可以從攝取的不飽和酸的碳素鏈的延長等而轉變形成。另外環丙烷脂肪酸由S-腺苷甲硫氨酸的C1,結合於不飽和酸的雙鍵上而產生。脂肪酸作為CoA衍生物,用於合成各種底物。

2、其他脂類:磷脂的生成

磷脂酸是最簡單的磷脂,也是其他甘油磷脂的前體。磷脂酸與CTP反應生成CDP-二醯甘油,在分別與肌醇、絲氨酸、磷酸甘油反應,生成相應的磷脂。磷脂酸水解成二醯甘油,再與CDP-膽鹼或CDP-乙醇胺反應,分別生成磷脂醯膽鹼和磷脂醯乙醇胺。

(6)生物體內硬脂酸在哪裡合成擴展閱讀

功能

1、能量儲存

是能量儲存的最佳方式,如動物、油料種子的甘油三酯。通過如下數據對照,可以得出結論:

體內的兩種能源物質比較(糖類、脂類)

單位重量的供能:糖4.1千卡/克,脂9.3千卡/克。

儲存體積:1糖元或澱粉:2水,脂則是純的,體積小得多。

動用先後:糖類優先被消耗,然後是脂類。因此,很多減肥/瘦身原理、辟穀等,皆源於此。

2、生物膜的骨架

細胞膜的液態鑲嵌模型:磷脂雙酯層,膽固醇,蛋白質,糖脂,甘油磷脂和鞘磷脂。

3、電與熱的絕緣體

動物的脂肪組織有保溫,防機械壓力等保護功能,植物的蠟質可以防止水分的蒸發。

電絕緣:神經細胞的鞘細胞,電線的包皮,神經短路。

熱絕緣:冬天保暖,企鵝、北極熊等。

4、其他

信號傳遞:固醇類激素。

酶的激活劑:卵磷脂激活β-羥丁酸脫氫酶。

糖基載體:合成糖蛋白時,磷酸多萜醇作為羰基的載體。

激素、維生素和色素的前體(萜類、固醇類)。

生長因子與抗氧化劑。

參與信號識別和免疫(糖脂)。

Ⅶ 脂肪酸是如何進行生物合成的

脂肪酸的生物合成高級脂肪酸的合成,以乙醯CoA為基礎,通過乙醯輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單醯CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單醯CoA與乙醯CoA一起,在脂肪酸合成酶的催化下合成C16的軟脂酸(或C18的硬脂酸)醫學|教育|網搜集整理,但這是包括在醯基載體蛋白(ACP)參與下的脫羧、C2單位縮合、以及由NADPH還原過程在內的反復進行的復雜過程。產生的脂肪酸作為CoA衍生物,在線粒體中與乙醯CoA,在微粒體中與丙二酸單醯CoA縮合,每次增加兩個碳,不斷延長碳鏈。而單不飽和脂肪酸,由飽和醯基CoA(或ACP)的好氧的不飽和化(微粒體,微生物等。必須有O2和NADH)而產生,或由脂肪酸生物合成途中的β-羥醯ACP的脫水反應(及碳鍵延長)而產生。多聚不飽和脂肪酸在高等動物不一定產生,可以從攝取的不飽和酸的碳素鏈的延長等而轉變形成。另外環丙烷脂肪酸由S-腺苷甲硫氨酸的C1,結合於不飽和酸的雙鍵上而產生。脂肪酸作為CoA衍生物,用於合成各種底物。
在於各組織細胞的線粒體中,稱為三羧酸循環。在於各組織細胞的線粒體中,稱為三羧酸循環。

Ⅷ 試述脂肪酸生物合成途徑及各步反應方程式

摘要 你好!脂肪酸合成的起始原料是乙醯CoA,它主要來自糖酵解產物丙酮酸,脂肪酸的合成是在胞液中。

Ⅸ 脂肪酸的合成

機體內的脂肪酸大部分來源於食物,為外源性脂肪酸,在體內可通過改造加工被機體利用。同時機體還可以利用糖和蛋白轉變為脂肪酸稱為內源性脂肪酸,用於甘油三酯的生成,貯存能量。合成脂肪酸的主要器官是肝臟和哺乳期乳腺,另外脂肪組織、腎臟、小腸均可以合成脂肪酸,合成脂肪酸的直接原料是乙醯CoA,消耗ATP和NADPH,首先生成十六碳的軟脂酸,經過加工生成機體各種脂肪酸,合成在細胞質中進行。 ⒈ 乙醯CoA的轉移
乙醯CoA可由糖氧化分解或由脂肪酸、酮體和蛋白分解生成,生成乙醯CoA的反應均發生在線粒體中,而脂肪酸的合成部位是胞漿,因此乙醯CoA必須由線粒體轉運至胞漿。但是乙醯CoA不能自由通過線粒體膜,需要通過一個稱為檸檬酸—丙酮酸循環(citrate pyruvate cycle)來完成乙醯CoA由線粒體到胞漿的轉移。
首先在線粒體內,乙醯CoA與草醯乙酸經檸檬酸合成酶催化,縮合生成檸檬酸,再由線粒體內膜上相應載體協助進入胞液,在胞液內存在的檸檬酸裂解酶(citrate lyase)可使檸檬酸裂解產生乙醯CoA及草醯乙酸。前者即可用於生成脂肪酸,後者可返回線粒體補充合成檸檬酸時的消耗。但草醯乙酸也不能自由通透線粒體內膜,故必須先經蘋果酸脫氫酶催化,還原成蘋果酸再經線粒體內膜上的載體轉運入線粒體,經氧化後補充草醯乙酸。也可在蘋果酸酶作用下,氧化脫羧生成丙酮酸,同時伴有NADPH的生成。丙酮酸可經內膜載體被轉運入線粒體內,此時丙酮酸可再羧化轉變為草醯乙酸。每經檸檬酸丙酮酸循環一次,可使一分子乙酸CoA由線粒體進入胞液,同時消耗兩分子ATP,還為機體提供了NADPH以補充合成反應的需要。
⒉ 丙二醯CoA的生成
乙醯CoA由乙醯CoA羧化酶(acetyl CoA carboxylase)催化轉變成丙二醯CoA(或稱丙二酸單醯CoA),乙醯CoA羧化酶存在於胞液中,其輔基為生物素,在反應過程中起到攜帶和轉移羧基的作用。該反應機理類似於其他依賴生物素的羧化反應,如催化丙酮酸羧化成為草醯乙酸的反應等。反應如下:
由乙醯CoA羧化酶催化的反應為脂肪酸合成過程中的限速步驟。此酶為一別構酶,在變構效應劑的作用下,其無活性的單體與有活性的多聚體(由100個單體呈線狀排列)之間可以互變。檸檬酸與異檸檬酸可促進單體聚合成多聚體,增強酶活性,而長鏈脂肪酸可加速解聚,從而抑制該酶活性。乙醯CoA羧化酶還可通過依賴於cAMP的磷酸化及去磷酸化修飾來調節酶活性。此酶經磷酸化後活性喪失,如胰高血糖素及腎上腺素等能促進這種磷酸化作用,從而抑制脂肪酸合成;而胰島素則能促進酶的去磷酸化作用,故可增強乙醯CoA羧化酶活性,加速脂肪酸合成。
同時乙醯CoA羧化酶也是誘導酶,長期高糖低脂飲食能誘導此酶生成,促進脂肪酸合成;反之,高脂低糖飲食能抑制此酶合成,降低脂肪酸的生成。
⒊ 軟脂酸的生成
在原核生物(如大腸桿菌中)催化脂肪酸生成的酶是一個由7種不同功能的酶與一種醯基載體蛋白(acyl carrier protein,ACP)聚合成的復合體。在真核生物催化此反應是一種含有雙亞基的酶,每個亞基有7個不同催化功能的結構區和一個相當於ACP的結構區,因此這是一種具有多種功能的酶。不同的生物此酶的結構有差異。
軟脂酸的合成實際上是一個重復循環的過程,由1分子乙醯CoA與7分子丙二醯CoA經轉移、縮合、加氫、脫水和再加氫重復過程,每一次使碳鏈延長兩個碳,共7次重復,最終生成含十六碳的軟脂酸。
脂肪酸合成需消耗ATP和NADPH+H+,NADPH主要來源於葡萄糖分解的磷酸戊糖途徑。此外,蘋果酸氧化脫羧也可產生少量NADPH。
脂肪酸合成過程不是β-氧化的逆過程,它們反應的組織,細胞定位,轉移載體,醯基載體,限速酶,激活劑,抑制劑,供氫體和受氫體以及反應底物與產物均不相同。 機體內不僅有軟脂酸,還有碳鏈長短不等的其它脂肪酸,也有各種不飽和脂肪酸,除營養必需脂肪酸依賴食物供應外,其它脂肪酸均可由軟脂酸在細胞內加工改造而成。
⒈ 碳鏈的延長和縮短
脂肪酸碳鏈的縮短在線粒體中經β-氧化完成,經過一次β-氧化循環就可以減少兩個碳原子。
脂肪酸碳鏈的延長可在滑面內質網和線粒體中經脂肪酸延長酶體系催化完成。
在內質網,軟脂酸延長是以丙二醯CoA為二碳單位的供體,由NADPH+H+供氫,亦經縮合脫羧、還原等過程延長碳鏈,與胞液中脂肪酸合成過程基本相同。但催化反應的酶體系不同,其脂肪醯基不是以ACP為載體,而是與輔酶A相連參加反應。除腦組織外一般以合成硬脂酸(18C)為主,腦組織因含其他酶,故可延長至24碳的脂肪酸,供腦中脂類代謝需要。
在線粒體,軟脂酸經線粒體脂肪酸延長酶體系作用,與乙醯CoA縮合逐步延長碳鏈,其過程與脂肪酸β氧化逆行反應相似,僅烯脂醯CoA還原酶的輔酶為NADPH+H+與β氧化過程不同。通過此種方式一般可延長脂肪酸碳鏈至24或26碳,但以硬脂酸最多。
⒉ 脂肪酸脫飽和
人和動物組織含有的不飽和脂肪酸主要為軟油酸(16:1△9)、油酸(18:1△9)、亞油酸(18:2△9,12)、亞麻酸(18:3△9,12,15)、花生四烯酸(20:4△5,8,11,14)等。其中最普通的單不飽和脂肪酸軟油酸和油酸可由相應的脂肪酸活化後經去飽和酶(acylCoAdesaturase)催化脫氫生成。這類酶存在於滑面內質網,屬混合功能氧化酶;因該酶只催化在△9形成雙鍵,而不能在C10與末端甲基之間形成雙鍵,故亞油酸(linoleate)、亞麻酸(linolenate)及花生四烯酸(arachidonate)在體內不能合成或合成不足。但它們又是機體不可缺少的,所以必須由食物供給,因此,稱之為必需脂肪酸(essential fatty acid)。
植物組織含有可以在C-10與末端甲基間形成雙鍵(即ω3和ω6)的去飽和酶,能合成以上3種多不飽和脂肪酸。當食入亞油酸後,在動物體內經碳鏈加長及去飽和後,可生成花生四烯酸。 乙醯CoA羧化酶催化的反應是脂肪酸合成的限速步驟,很多因素都可影響此酶活性,從而使脂肪酸合成速度改變。脂肪酸合成過程中其他酶,如脂肪酸合成酶、檸檬酸裂解酶等亦可被調節。
⒈代謝物的調節
在高脂膳食後,或因飢餓導致脂肪動員加強時,細胞內軟脂醯CoA增多,可反饋抑制乙醯CoA羧化酶,從而抑制體內脂肪酸合成。而進食糖類,糖代謝加強時,由糖氧化及磷酸戊糖循環提供的乙醯CoA及NADPH增多,這些合成脂肪酸的原料的增多有利於脂肪酸的合成。此外,糖氧化加強的結果,使細胞內ATP增多,進而抑制異檸檬酸脫氫酶,造成異檸檬酸及檸檬酸堆積,在線粒體內膜的相應載體協助下,由線粒體轉入胞液,可以別構激活乙醯CoA羧化酶。同時本身也可裂解釋放乙醯CoA,增加脂肪酸合成的原料,使脂肪酸合成增加。
⒉激素的調節
胰島素、胰高血糖素、腎上腺素及生長素等均參與對脂肪酸合成的調節。
胰島素能誘導乙醯CoA羧化酶、脂肪酸合成酶及檸檬酸裂解酶的合成,從而促進脂肪酸的合成。此外,還可通過促進乙醯CoA羧化酶的去磷酸化而使酶活性增強,也使脂肪酸合成加速。
胰高血糖素等可通過增加cAMP,致使乙醯CoA羧化酶磷酸化而降低活性,因此抑制脂肪酸的合成。此外,胰高血糖素也抑制甘油三酯合成,從而增加長鏈脂醯CoA對乙醯CoA羧化酶的反饋抑制,亦使脂肪酸合成被抑制。

閱讀全文

與生物體內硬脂酸在哪裡合成相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:459
乙酸乙酯化學式怎麼算 瀏覽:1131
沈陽初中的數學是什麼版本的 瀏覽:1047
華為手機家人共享如何查看地理位置 瀏覽:777
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:610
數學c什麼意思是什麼意思是什麼 瀏覽:1099
中考初中地理如何補 瀏覽:1049
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:475
數學奧數卡怎麼辦 瀏覽:1078
如何回答地理是什麼 瀏覽:800
win7如何刪除電腦文件瀏覽歷史 瀏覽:839
大學物理實驗干什麼用的到 瀏覽:1185
二年級上冊數學框框怎麼填 瀏覽:1393
西安瑞禧生物科技有限公司怎麼樣 瀏覽:547
武大的分析化學怎麼樣 瀏覽:977
ige電化學發光偏高怎麼辦 瀏覽:1070
學而思初中英語和語文怎麼樣 瀏覽:1299
下列哪個水飛薊素化學結構 瀏覽:1134
化學理學哪些專業好 瀏覽:1221
數學中的棱的意思是什麼 瀏覽:751