導航:首頁 > 生物信息 > 生物質氣化過程包括哪些階段

生物質氣化過程包括哪些階段

發布時間:2022-08-09 17:39:45

1. 農林生物質發電原理

回答摘自:中圖分類號:TM619 文獻標識碼:A 文章編號:1672-9064(2009)06-0059-03

生物質發電技術發展探討

陸智(廣西電力工業勘察設計研究院廣西南寧530023)
李雙江(河北省電力勘測設計研究院)
鄭威( 中南電力設計院)

生物質能是一種頗具產業化和規模化利用前景的可再生能源,對我國能源結構的優化意義重大。發展生物質發電,是構築穩定、經濟、清潔、安全能源供應體系,突破經濟社會發展資源環境制約的重要途徑。秸稈發電變無序焚燒為集中燃燒並發電、造肥,節省了大量煤炭資源,並增加農民收入。秸稈在生長和燃燒中不增加大氣中CO2量,且含硫量極低,僅為0.1%。發展生物質發電,替代煤炭,可顯著減少CO2等溫室氣體和SO2的排放,有巨大的環境效益。
1 生物質直接燃燒發電利用技術
生物質直燃發電就是將生物質直接作為燃料進行燃燒,用於發電或者熱電聯產。生物質直接燃燒具有以下特點:(1)生物質燃燒所放出的CO2大體相當於其生長時通過光合作用所吸收的CO2, 因此可以認為是CO2的零排放,有助於緩解溫室效應;(2)生物質的燃燒產物用途廣泛,灰渣可加以綜合利用;(3)生物質燃料可與礦物質燃料混合燃燒,既可以減少
運行成本,提高燃燒效率,又可以降低SO2、NOx 等有害氣體的排放濃度;(4)採用生物質燃燒設備可以最快速度實現各種生物質資源的大規模減量化、無害化、資源化利用,而且成本較低,因而生物質直接燃燒技術具有良好的經濟性和開發潛力。
1.1 單燃生物直燃技術
在歐美發達國家主要燃燒的生物質是木本植物, 在我國,由於特殊的國情使得我們用於燃燒的物質基本局限於秸稈等草本類植物。據有關文獻對秸稈的燃燒機理進行的研究,秸稈等生物質與常規燃料的區別主要有以下幾點:(1)秸稈的含水量較大,約20%,是常規燃料的8~10 倍。因此,在鍋爐相同出力的情況下,其煙氣量約是常規燃料的1.5~2 倍。在鍋爐受熱面布置時,要充分考慮這一情況。(2)秸稈的堆積密度較小。秸稈投入爐內燃燒時,先落在爐床上,隨著水分蒸發,開始漂浮在爐內進行燃燒。因此,在這類鍋爐設計時, 一定要考慮到燃燒室的體積要大一些,使得燃料在爐內有足夠的停留時間,得以完全燃燼。(3)從燃料的燃燒過程來看,大多數秸稈(除甘蔗渣外)在乾燥後,揮發份快速脫離母體迅猛燃燒,揮發份不附著在秸稈表面燃燒,這與煤的燃燒機理是完全不同的。(4)逸出揮發份後的秸稈變黑成為暗紅色焦炭粒子,未見明顯的火焰,而且在爐膛高溫火焰的輻射下,緩慢地燃燒,燃燼時間也較長。
1.1.1 層燃爐燃燒技術
層燃爐燃燒技術主要以爐排爐為代表,燃料在固定或者移動的爐排上實現燃燒,空氣從下方透過爐排供應上部的燃料,燃料處於相對靜止的狀態,燃料入爐後的燃燒時間可由爐排的移動或者振動來控制,以灰渣落入爐排下或者爐排後端的灰坑為結束。
1.1.2 循環流化床燃燒技術
循環流化床鍋爐獨特的流體動力特性和結構使其具備很多獨特的優點,如燃料適應性廣,低溫燃燒,燃燒效率高,負荷調節性能好等。瑞典、丹麥、德國等發達國家在流化床燃用生物質燃料技術方面具有較高的水平。美國愛達荷能源產品公司已經開發生產出燃生物質流化床鍋爐, 鍋爐蒸汽出力為4.5~50t/h,供熱鍋爐出力為36.67MW;美國CE 公司利用魯奇技術研製的大型燃廢木循環流化床發電鍋爐出力為100t/h,蒸汽壓力為8.7MPa; 美國B&W 公司製造的燃木柴流化床鍋爐也於20 世紀80~90 年代初投入商業運行。此外,瑞典以樹枝、樹葉等林業廢棄物作為大型流化床鍋爐的燃料加以利用,鍋爐熱效率可達到80%;瑞典和丹麥正在實行利用生物質熱電聯產的計劃,使生物質能在提供高品位電能的同時,滿足供熱的要求。
1.2 生物質與煤混合直燃技術
混合燃燒的技術優勢:(1)生物質是可再生能源,煤粉爐中生物質共燃,可以利用現役電廠提供一種快速而低成本的生物質發電技術,也是一種最好(廉價而低風險)的利用可再生能源發電的技術。(2)煤粉燃燒發電效率高,可達35%以上,生物質共燃正是借用其高效率的優點,這是現階段其它生物質發電技術難以比擬的。(3)生物質燃燒低硫低氮,在與煤粉共燃時可以降低電廠的SO2和NOx 排放。(4)對於煤粉燃燒電廠,共燃生物質意味著CO2排放的降低, 被公認為是現役燃煤電廠降低CO2排放的最有效措施。(5)我國生物質資源豐富,可利用未被利用的生物質摺合近4 億t 標准煤,且分布廣泛,可就地利用;另一方面,大量利用生物質發電可增加農民收入,促進農業和農村經濟的可持續發展。(6)生物質共燃技術簡單,投資和運行費用低。生物質相對較便宜,對燃煤電廠而言還可增加燃料的選擇范圍和燃料適應性,降低燃料成本。丹麥哥本哈根AVEDORE 電廠,2002 年增加了熱功率為105MW 的生物質發電設備,採用天然氣(油)與麥秸混合燃燒工藝, 每小時秸稈消耗25t, 秸稈主要來源於芬蘭和丹麥。生物質的水分含量用超聲波測定,控制在25%左右。
2 生物質氣化發電技術
生物質氣化是在高溫下部分氧化的轉化過程。該過程是直接向生物質通氣化劑(空氣、氧氣或水蒸汽),使之在缺氧的條件下轉變為小分子可燃氣體的過程。目前, 生物質氣化技術大體上可按2 大類進行分類:①按氣化劑分類,②按設備運行方式分類。
2.1 按氣化劑類型分類
生物質氣化技術按氣化劑類型分類。其中,干餾氣化其實是熱解氣化的一種特例。且由於干餾是吸熱反應,應在工藝中提供外部熱源以使反應進行。氧氣氣化則不需要提供外部熱源,產品為熱值為15000kJ/m3 的中熱值氣化氣。空氣氣化由於N2的加入,使其可燃氣成分含量降低,熱值也隨之降低在5000kJ/m3 左右,為低熱值氣體。氫氣氣化反應條件苛刻,需要在高溫高壓且具有氫源的條件下進行, 其氣化氣為熱值高達22260~26040kJ/m3 的高熱值氣化氣。
2.2 按氣化裝置運行方式分類
生物質氣化技術按氣化裝置的運行方式分類。國內外已投入商業運行的氣化方法主要有:固定床氣化爐、流化床氣化爐。固定床氣化爐可分為下吸式、上吸式、橫吸式和開心式。其中下吸式氣化爐應用最廣。
生物質原料由爐頂的加料口投入爐內,氣化劑(空氣、氧氣)可以由頂部進入,也可以在喉部加入。氣化劑與物料混合向下流動, 在高溫喉管區發生氣化反應。下吸式氣化爐主要特點是氣化強度高(相對於上吸式),工作穩定性好,可隨時加料;由於燃燒區在熱解區與還原區之間,因而干餾和熱解的產物都要經過燃燒區,在高溫下裂解H2和CO,使得氣化中焦油含量大為減少。流化床氣化爐按氣化爐結構和氣化過程,可將流化床氣化爐分為循環流化床、雙流化床和攜帶床四種類型。按吹入氣化劑的壓力大小,流化床氣化爐又可分為常壓流化床和加壓流化床。其中循環流化床由於其眾多優點,適用於大型商業化運行。循環流化床是唯一在恆溫床上反應的氣化爐。氣化反應在床內進行,焦油也在床內裂解。流化介質一般選用惰性材料(沙子)或非惰性材料(石灰或催化劑),可增加傳熱及清洗可燃氣,適合水分含量大、熱值低、著火困難的生物質燃料。循環流化床氣化爐的主要缺點是入料需要預處理,產氣中灰分需要很好的凈化處理和部件磨損嚴重。
典型操作條件為溫度600℃,加工能力100kg/h,以楊木為原料時產氣率可達65%。優點在於結構緊湊、傳熱速率高、氣相停留時間短、有效抑制裂化,但是載氣需求量大。氣化產生的可燃氣主要用來發電。生物質氣化的發電技術有以下3 種方法:帶有氣體透平的生物質加壓氣化、帶有透平或者引擎的常壓生物質氣化、帶有朗肯循環的傳統生物質燃燒系統。傳統的生物質氣化聯合發電技術(BIGCC)包括生物質氣化、氣體凈化、燃氣輪機發電及蒸汽輪機發電。生物質氣化發電技術的基本原理是把生物質轉化為可燃氣,可利用可燃氣推動燃氣發電設備進行發電。氣化發電工藝包括3 個過程:①生物質氣化,把固體生物質轉化為氣體燃料;②氣體凈化,氣化出來的燃氣都帶有一定的雜質,包括灰分、焦炭和焦油等,需要經過凈化系統把雜質除去,以保證燃氣發電設備的正常運行;③燃氣發電。目前,國際上有很多發達國家開展提高生物質發電效率方面的研究, 如美國Battelle(63MW)項目,歐洲英國(8MW)和芬蘭(6MW)的示範工程。
3 生物質直接燃燒技術與生物質氣化技術的比較
生物質直接用來燃燒簡化了環節和設備, 減少了投資,但利用率還比較低,利用的范圍還不是很廣。由於中國生物質分布分散,成為大規模利用生物質直接燃燒技術發電較大障礙。然而秸稈類生物質因為含有較多的K、Cl 等無機物質,在燃燒過程中很容易出現嚴重的積灰、結渣、聚團和受熱面腐蝕等鹼金屬問題,鹼金屬問題是秸稈大規模燃燒利用面臨的嚴峻挑戰,這些還需要進一步研究解決問題的方法。生物質氣化技術能夠一定程度上緩解中國對氣體燃料的需求, 生物質被氣化後利用的途徑也得到相應的擴展,提高了利用效率。

參考文獻
1 張明,袁益超,劉聿拯. 生物質直接燃燒技術的發展研究.能源研究
與信息,2005,21(1)
2 曹建峰.秸稈的綜合利用技術分析.能源研究與分析,2006,22(1)
3 秸稈直接燃燒供熱發電項目, 資源可供性調研和相關問題的研究.
太陽能,2006,(2)
4 別如山,李炳熙,陸慧林,等.燃燒生物質廢料流化床鍋爐.熱能動力
工程,2000,15(4)
5 盛昌棟,張軍. 煤粉鍋爐共燃生物質發電技術的特點和優勢.熱力
發電,2006(3)
6 袁振宏. 歐洲生物質發電技術掠影.可再生能源,2004(4)
7 雒廷亮,許慶利,劉國際,等.生物質能的應用前景分析. 能源研究
與信息,2003,19(4)
8 中國生物質能技術開發中心. 生物質氣化及相關技術的技術經濟
評價,1996
9 農業部生物質氣化技術研究測試培訓中心. 生物質氣化技術及其
應用,1999
10 董良傑.生物質熱解試驗與機理研究,沈陽農業大學博士學位論
文,1997
11 米鐵等. 生物質氣化技術比較及其氣化發電技術進展. 新能源及
工藝,2004(5)
12 吳創之,馬隆龍,陳勇. 生物質氣化發電技術發展現狀.中國科技
產業,2006
13 Weigang,Wenli Song.Power proction from biomass in Denmark.燃
料化學學報,2005,33(6)

2. 生物質氣化爐的工作原理

不同生物質的反應過程也有差異,常見氣化爐反應可分為氧化層、還原層、裂解層和乾燥層。
1、氧化反應
生物質在氧化層中的主要反應為氧化反應,氣化劑由爐柵的下部導入,經灰渣層吸熱後進入氧化層,在這里通過高溫的碳發生燃燒反應,生成大量的二氧化碳,同時放出熱量,溫度可達1000~1300攝氏度,
在氧化層進行的燃燒均為放熱反應,這部分反應熱為還原層的還原反應,物料的咧解及乾燥提供了熱源。
2、還原反應。在氧化層中生成的二氧化碳和碳與水蒸氣發生還原反應。
3、裂解反應區。氧化區及還原區生成的熱氣體在上行過程中經裂解區,將生物質加熱,使在裂解區的生物質進行裂解反應。
4、乾燥區。經氧化層、還原層及裂解反應區的氣體產物上升至該區,加熱生物質原料,使原料中的水分蒸發,吸收熱量,並降低產生溫度,生物質氣化爐的出口溫度一般為100~300℃
氧化區及還原區總稱氣化區,氣化反應主要在這里進行。裂解區和乾燥區總稱為燃料准備區。

3. 什麼是生物質氣化生物質氣化的應用范圍求專業人士解答!

生物質氣化有多種形式。如果按氣化介質分,可分為使用氣化介質和不使用氣化介質,其中使用氣化介質的技術又分為干餾氣化、空氣氣化、氧氣氣化等。目前應用最廣泛的是空氣氣化。如果按產氣的用途來分,可分為生物質氣化供氣技術、供熱技術、發電技術和合成化學品技術等。目前各種技術的實際應用都在進行,生物質氣化供氣技術由於技術起點低,投資少適合我國農村大力發展。

空氣氣化技術直接以空氣為氣化劑,氣化效率高,是目前應用最廣,也是所有氣化技術中最簡單、最經濟的一種。富氧氣化使用富氧氣體作為氣化劑,反應溫度高,反應速度快,可得到焦油含量低,但成本高。水蒸氣氣化是一水蒸氣作為氣化劑,燃氣質量好,氫氣含量高,產生的也是中熱值氣。氫氣氣化是由氫氣同碳及水發生反應生成大量的甲烷的過程,其反應條件苛刻,需要在高溫高壓且具有氫源的條件下進行,可產生熱值為22260-26040kjm³之間的高熱值氣。干餾氣化不使用氣化介質,產生固定碳、焦油與可燃氣。

氣化爐是生物質氣化系統中的核心設備,生物質在氣化爐內進行氣化反應,生成可燃氣。生物質氣化爐可分為固定床氣化爐和流化床氣化爐兩種類型,而固定床氣化爐和流化床氣化爐又都是多種不同形式的,如圖所示。

固定床氣化爐分為下吸式氣化爐、橫吸式氣化爐和開心式氣化爐。

在下吸式氣化爐中,氣流是向下流動的,通過爐柵進入外腔。原料由上部加入,依靠重力下落。經過乾燥區後水分蒸發,在裂解區分解出的二氧化碳、一氧化碳、氫氣、焦油等熱氣流向下流經氣化區。在氣化區發生氧化還原反應。同時由於氧化區的溫度高,焦油在通過該區時發生裂解,變為可燃氣體。

爐內運行溫度在400~1200℃左右,燃氣從反應層下部吸出,灰渣從底部排出。下吸式固定床氣化工作溫度,生產的氣體成分相對穩定;可燃氣中焦油含量較少。但可燃氣中灰分含量較多,出爐可燃氣溫度高,爐內熱效率低。

在上吸式氣化爐的氣流流動方向與物料運行方向相反。物料由氣化爐頂部加入,氣化劑由爐底進入氣化爐,產出的燃氣通過氣化爐內的各個反應區,從氣化爐上部排出。向下流動的生物質原料被向上流動的熱氣體烘乾脫去水分,干生物質進去裂解區後得到更多的熱量,發生裂解反應。

產生的炭進入還原區,與氧化區產生的熱氣體發生還原反應,生產一氧化碳和氫氣等可燃氣體。上吸式氣化爐生產的可燃氣直接作為鍋爐或加熱爐的燃料氣或向系統提供工藝熱源。該種爐型主要應用於歐洲和東南亞國家。上吸式氣化爐有一個突出的缺點,就是在裂解區生成的焦油沒有通過氣化區而直接混入可燃氣體排出,這樣產出的氣體中焦油含量高,且不易凈化。

開心式固定床氣化爐的結構與氣化原理與下吸式固定床氣化爐相類似,是下吸式氣化爐的一種特別形式。開心式固定床氣化爐時我國研製出的,主要用於稻殼氣化,已投入商業運行多年。

生物質流化床氣化的研究起步比較晚。

流化床氣化在吹入的氣化劑作用下,物料顆粒、砂子、氣化介質充分接觸,受熱均勻,在爐內呈「沸騰」狀態,因此又叫沸騰床,反應溫度一般為750~850℃。流化床氣化爐有一個熱砂床,生物質的燃燒和氣化反應都在熱砂床上進行。

氣化反應隨度快,產氣率高。與固定床相比,流化床沒有爐柵,一個簡單的流化床由燃燒室、布風板組成,氣化劑通過布風板進入流化床反應器中。按氣化器結構和氣化過程,可將流化床分為鼓泡流化床和循環流化床。流化床氣化反應速度快,產氣量大,燃氣熱值高焦油含量低,是唯一在恆溫床上反應的氣化爐,原料適應性廣,可大規模利用。

但可燃氣中灰分含量較多,結構比較復雜。按氣化爐結構和氣化過程可將流化床氣化爐分為單床氣化爐、雙床氣化爐、循環流化床氣化爐及攜帶床氣化爐四種類型。

生物質氣化技術的多樣性決定了其應用類別的多樣性不同的氣化爐,不同的工藝最終的用途都不用;同一氣化設備選用不同的物料,不同的工藝最終用途也不同。因此不同地區,不同條件,選用不同的氣化設備。生物質氣化技術的基本應用方式主要有四個方面,即用於供熱、用於發電、用於供氣、用於化學品合成。

以上資料來自:http://www.thjq.net/html/2378505230.html

4. 生物質燃氣化有哪幾種手段

生物質(biomass)是指通過光合作用而形成的各種有機體,包括所有的動植物和微生物。生物質能則是太陽能以化學能形式儲存在生物質中的能量形式,它一直是人類賴以生存的重要能源之一
生物質燃氣凈化 是指利用快速冷凝懸浮凈化的技術工藝,對秸稈燃氣中的木焦油進行吸附和凝結。生物質秸稈燃氣的凈化關鍵在於細小顆粒焦油塵的凝聚。研製出的YN01 型生物質燃氣凈化機, 樣機運行試驗表明已克服了生物質秸稈燃氣凈化系統普遍存在的初投資大、設備復雜、凈化效率低等缺點, 有較高的實用價值和推廣應用前景。
生物質能一直是人類賴以生存的重要能源之一, 在世界能源消耗中, 生物質能占總能耗的14 %。從環境的觀點來看, 開發生物質能有助於減輕溫室效應, 減輕酸雨酸霧、粉塵等全球性環境污染。生物質能高品位利用成為近年來可再生能源發展最迅速的技術之一 。
生物質氣化是生物質能高品位利用的一種主要轉換技術, 是將生物質原料在缺氧狀態下燃燒和還原的能量轉換過程, 它可以將固態生物質原料轉換成高品位的可燃氣體。但其熱解氣化過程中產生的焦油會對管道、灶具、燃氣透平等造成堵塞、污染和腐蝕, 因此須對所產的生物氣進行適當的凈化處理,但生物氣凈化裝置投資較大, 凈化效果不理想, 使得凈化系統運行壽命短, 經濟效益差, 不宜推廣應用。因此, 生物質燃氣的凈化已成為制約生物質熱解氣化技術商業化推廣的主要因素, 是國內外生物質能科學領域所急待解決的重要課題

5. 生物質氣化發電的組成部分

組成
生物質氣化內燃發電系統主要由氣化爐、燃氣凈化系統和內燃發電機等組成:
氣化爐是將生物質能由固態轉化為燃氣的裝置。生物質在氣化爐內通過控制空氣供應量,而進行不完全燃燒,實現低值生物質能由固體向氣態的轉化,生成包含氫氣(H2)、一氧化碳(CO)、甲烷(CH4)、多碳烴(CnHm)等可燃成分的燃氣,完成生物質的氣化過程。
生物質氣化發電機組
氣化產生的燃氣出口溫度隨氣化爐型式的不同,在350℃~650℃之間,並且燃氣中含有未完全裂解的焦油及灰塵等雜質,為滿足內燃機長期可靠工作的要求,需要對燃氣進行冷卻和凈化處理,使燃氣溫度降到40℃以下、焦油灰塵含量控制在50mg/Nm3以內,燃氣經過凈化後,再進入內燃機發電。
在內燃機內,燃氣混合空氣燃燒做功,驅動主軸高速轉動,主軸再帶動發電機進行發電。
生物質氣化內燃發電就是通過以上過程,將各種廢棄物化廢為寶,轉化為優質電能,解決廢棄物的污染和能源的合理利用問題。

6. 生物質燃燒後的主要產物是什麼

生物質燃燒後,主要產物就是一氧化碳和二氧化碳。
一氧化碳分子是不飽和的亞穩態分子,在化學上就分解而言是穩定的。常溫下,一氧化碳不與酸、鹼等反應,但與空氣混合能形成爆炸性混合物,遇明火、高溫能引起燃燒、爆炸,屬於易燃、易爆氣體。因一氧化碳分子中碳元素的化合價是+2,能被氧化成+4價,具有還原性;且能被還原為低價態,具有氧化性。在一定條件下,一氧化碳和水蒸氣等摩爾反應生成氫氣和二氧化碳:CO + H2O → H2+ CO2。在工業裝置中,早期的一氧化碳變換反應通常分兩段進行,即高(中)溫變換和低溫變換。高(中)溫變換用鐵系作催化劑,典型水蒸汽和一氧化碳比為3左右,在溫度為300~500℃、空速為2000~4000 h-1的條件下,高溫變換爐出口一氧化碳含量為2%~5%;低溫變換用高活性銅鋅催化劑,在溫度為180~280℃、空速為2000~4000 h-1的條件下,低溫變換爐出口一氧化碳含量為0.2%~0.5%、二氧化碳(carbon dioxide),一種碳氧化合物,化學式為CO2,化學式量為44.0095、常溫常壓下是一種無色無味[2]或無色無嗅而其水溶液略有酸味的氣體,也是一種常見的溫室氣體、還是空氣的組分之一(佔大氣總體積的0.03%-0.04%[5])。在物理性質方面,二氧化碳的熔點為-56.6℃,沸點為-78.5℃,密度比空氣密度大(標准條件下),溶於水。在化學性質方面,二氧化碳的化學性質不活潑,熱穩定性很高(2000℃時僅有1.8%分解),不能燃燒,通常也不支持燃燒,屬於酸性氧化物,具有酸性氧化物的通性,因與水反應生成的是碳酸,所以是碳酸的酸酐。
二氧化碳一般可由高溫煅燒石灰石或由石灰石和稀鹽酸反應製得,主要應用於冷藏易腐敗的食品(固態)、作致冷劑(液態)、製造碳化軟飲料(氣態)和作均相反應的溶劑(超臨界狀態)等。

閱讀全文

與生物質氣化過程包括哪些階段相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:445
乙酸乙酯化學式怎麼算 瀏覽:1116
沈陽初中的數學是什麼版本的 瀏覽:1026
華為手機家人共享如何查看地理位置 瀏覽:753
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:592
數學c什麼意思是什麼意思是什麼 瀏覽:1081
中考初中地理如何補 瀏覽:1031
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:460
數學奧數卡怎麼辦 瀏覽:1059
如何回答地理是什麼 瀏覽:783
win7如何刪除電腦文件瀏覽歷史 瀏覽:824
大學物理實驗干什麼用的到 瀏覽:1169
二年級上冊數學框框怎麼填 瀏覽:1379
西安瑞禧生物科技有限公司怎麼樣 瀏覽:527
武大的分析化學怎麼樣 瀏覽:960
ige電化學發光偏高怎麼辦 瀏覽:1056
學而思初中英語和語文怎麼樣 瀏覽:1279
下列哪個水飛薊素化學結構 瀏覽:1117
化學理學哪些專業好 瀏覽:1204
數學中的棱的意思是什麼 瀏覽:736