導航:首頁 > 物理學科 > 有什麼科學物理

有什麼科學物理

發布時間:2022-04-17 03:59:48

① 關於物理學,你知道它涉及到哪些領域嗎

物理學是一門研究化學或生物學所不能研究的非生命物質和能量的性質和特性以及物質宇宙的基本定律的科學。因此,這是一個龐大而多樣的研究領域。

為了弄懂它,科學家們把注意力集中在該學科的一兩個較小的領域。這使得他們能夠成為這一狹窄領域的專家,而不會陷入關於自然世界的大量知識中。

現代物理學

現代物理學包括原子及其組成部分,相對論和高速的相互作用,宇宙學和空間探索,以及介觀物理學,即那些大小在納米和微米之間的宇宙碎片。現代物理學的一些領域是:

來源

② 大學有關物理方面的專業有哪些

物理專業大方向一般可分為:理論物理、微電子、凝聚態。細分的話就很多了,比如純理論研究、核物理、生物物理、粒子物理;微電子學、固體電子學、物理電子學、應用物理;光學;凝聚態(研究方向太多,就不列了)。這些你到一些大學的物理主頁上應該能了解更多。


專業的好壞不能定論,要看個人喜好。理論物理的人一般基礎功底非常扎實,喜歡推導。微電子應用性要強多了,畢業後工作比較好找。凝聚態主要就是實驗來研究凝聚態物質,這裡面熱門的研究很多,磁性材料、納米材料等,凝聚態主要研究材料的構成和性質,也是基礎研究。


對於學校,據我個人了解,本科的物理北大第一,研究生是南大第一,科大的基礎功底最扎實,清華、復旦、交大的物理應用性強。理論物理北大、南大、科大差不多,微電子復旦最好(不過復旦的微電子是一個獨立的系),凝聚態就是南大最強。

拓展資料

大學物理專業排名

1.Massachusetts Institute of Technology 麻省理工大學
過去的20年,共有16位教授和16個校友獲得過諾貝爾獎。學校具有高水準的教授,他們都是國際知名的學者和學術頂尖人才,教學和科研能力都非常強。

物理學院在MIT的4-315大樓,學生可以直接聯系實驗室或者教授本人。物理系分4個部:天體物理;凝聚態,生物和等離子物理;實驗性核粒子物理;理論性核粒子物理。


2.California Institute of Technology 加州理工大學
錢學森研究生階段就讀的學校,也是全美三大理工之一,擁有多個高級研究中心,並且研究方向非常前沿。與物理有關的有,納米科學中心,量子信息中心等等。教授人數較多的方向為光子學及量子電子學,固體器件,固體及材料,

其他方向還有生物物理,等離子體物理,計算物理及流體力學。這些教授基本上都是其領域內的領軍級人物。它們的研究方向也基本上都是最前沿的,例如納米生物材料,量子光子學器件,納米器件,超快光子學,光通信等等。


3.Harvard University 哈佛大學
哈佛大學物理學研究生教育為學生涵蓋許多學科、跨越多個院系的學習機會。該專業研究生研究的跨學科性質體現在博士論文課題中,事實上,論文評審委員會的成員中也有其他院系的成員。為了保持個別項目的多樣性,物理學位的修習要求不高且非常靈活。

物理學系實驗和理論研究的主要領域有:實驗生物物理學、高能粒子物理、院子和分子物理、固體和流體物理、天文物理學、計算物理學、核物理學、統計機械、量子光學、數學物理以及量子理論、 弦理論和相對論等。


4.Princeton University 普林斯頓大學
普林斯頓大學物理系較強較集中的方向為凝聚態物理,宇宙學,高能物理。凝聚態物理主要研究是與量子物理相關,包括新材料中的電子的性質,量子霍爾效應等。其中電子工程系的adjunct professor——崔琦是諾貝爾物理學獎的獲得者。

宇宙學方向,較多的教授研究宇宙背景輻射(CMB)。此外,中微子的研究也很有特色。


5.Stanford University 斯坦福大學
2011年斯坦福大學的研究人員開發了一種新型的單細胞PCR微流體技術,並利用這一技術對數百個結腸癌細胞進行了單細胞基因表達分析,由此獲得了人類結腸癌異質性圖譜。相關研究成果發表在《自然生物技術》(Nature Biotechnology)雜志上。

1962年SLAC在基本粒子物理學中有重大發現,這門學科為物質的基本構成提供了洞察力。這個426英畝的設施包括了兩英里線性加速器,由美國大學的能源部門操作。在SLAC大約有1300名員工和3位斯坦福物理學家--Burton Richter,Richard Taylor和Martin Perl--由於他們所作的貢獻獲得了諾貝爾獎。

6.University of California—Berkeley 加州大學伯克利分校
加州大學伯克利分校認為教授和學生是共同挑戰物理學基礎的合作者。學校在三個主要領域取得突破:宇宙物理學、量子物理學以及生物物理學。研究者目前正在研究幼鳥的運動以及這些運動如何解釋它們飛行的本能。

天體物理學家正使用氣球運載軟γ射線望遠鏡來觀察核線發射和γ射線極化。在國家電子顯微鏡中心,生物物理學家正在控制石墨片周圍的碳原子。


7.Cornell University 康奈爾大學
康奈爾的研究員在過去的四十年中一直處於碰撞束物理學的技術前沿,並且康奈爾電子儲存環正在革新X射線技術。每年都會有超過一千名的科學家來到康奈爾實驗室研究基於加速器的科學與教育。現在它是加速粒子物理學領域的領跑者。


8.University of Chicago 芝加哥大學
芝加哥大學的物理學專業培養具備扎實物理基礎,能在物理學領域進行基礎研究和應用的人才,特別是各種微電子材料和器件的研製、開發、測試、分析、管理和設計方面的科研、教學和工程技術人才。


9.University of Illinois—Urbana-Champaign 伊利諾伊大學香檳分校
物理系是全美最大的物理系之一。兩次諾獎獲得者,肖特基晶體管的發明者之一和低溫超導理論的提出者——John Bardeen教授就出自UIUC的物理系。UIUC的物理系是全美凝聚態物理方向的top1,量子物理排名第7,原子核物理排名第8.


10.University of California—Santa Barbara 加州大學聖芭芭拉分校
加州大學聖芭芭拉分校物理系目前有58名教職員。提供學士、碩士、博士學程。物理系教授戴維·格婁斯是卡弗里理論物理研究所(KITP)的主持人。

該機構的終身職研究員也屬於物理系的教職員。截至2014年為止,該系有四個教職員獲得過諾貝爾獎,分別是中村修二(2014年物理獎)、戴維·格婁斯(2004年物理獎)、艾倫·黑格(2000年化學獎)和沃爾特·科恩(1998年化學獎)。

③ 物理學中,經常用的科學方法有哪些

1
.控制變數法:

定義:在研究一個量與多個因素關系時,將一些因素固定不變,分別只研究該量
與一個因素的關系,從而使問題簡化。

2
)舉例:研究電流與電壓、電阻關系時,先將電阻固定不變,研究電流與電壓的關
系,然後再將電壓固定不變,研究電流與電阻的關系。

2
.轉換法:


1
)定義:將看不見、摸不著、不便於研究的問題或因素,轉換成看得見、摸得著、
便於研究的問題或因素。


2
)舉例:磁場看不見,我們撒上鐵粉,通過鐵粉的有序排列「看見」磁場並進行研
究。

3
.放大法:


1
)定義:放大、擴大、變大或增加某些因素使問題更容易解決。許多情況下可以認
為這是一種特殊的轉換法。


2
)舉例:將帶有細玻璃管的塞子插到裝滿水的瓶口,顯示玻璃瓶的微小形變。

4
.換元法(替代法):


1
)定義:換元法就是運用替換或代換的方法去進行創造的方法。


2
)舉例:研究平面鏡成像時,用平面玻璃代替平面鏡進行研究。研究透鏡時,用冰
塊去代替玻璃製作簡易的透鏡。

5
.等效法:


1
)定義:兩種現象在效果上一樣,因此可以進行相互替代。可以認為這是一種特殊
的替代法。


2
)舉例:做功和熱傳遞在改變物體內能上是等效的。

6
.分類法:


1
)定義:將許多東西根據一定的規則進行分組。


2
)舉例:將汽化現象分為蒸發、沸騰兩類。

7
.比較法:


1
)定義:找到兩種東西(現象、物理量等)的相同點、不同點。


2
)舉例:蒸發和沸騰的異同點。

8
.類比法:


1
)定義:由兩種東西的一部分相似之處,推測其他部分也可能相似。


2
)舉例:研究功率時,想到功率表示做功快慢、速度表示運動快慢這一相似性,推
測功率在定義、定義式、單位等方面也可能與速度相似。

9
.擬人類比法:


1
)定義:擬人類比又稱「親身類比」或「角色扮演」。在解決問題時,讓學生設想
自己變成了問題中的某些事物,從而去設身處地、親臨其境地感受問題的本質,解決問題。

是一種特殊的類比法。


2
)舉例:在研究分子熱運動時,可以讓學生設想自己就是一個個的分子。

10
.模型法:


1
)定義:將研究的問題在抓住要點的基礎上進行簡化、抽象,建立模型,運用模型
去更方便地研究問題。


2
)舉例:為研究光現象,引入「光線」這一模型。

11
.等價變換法:


1
)定義:讓學生把有關知識的數據、形象、動作、符號、公式、實例、文字敘述等
各種信息自由地變換表示,培養學生聯想能力。


2
)例如,在研究壓強時,將壓強定義式變換為定義的文字敘述,或相反。

12
.逆向思考法:


1
)定義:對研究的問題從相反方向思考,從而受到啟發或得出結論。


2
)舉例:由「電能生磁」,引導學生反過來想一想,「磁能否生電?」

13
.缺點列舉法:


1
)定義:以挑剔的眼光去看待被研究的問題,找到它的缺點或不完美之處,然後針
對這些缺點找到解決的方法。


2
)舉例:在研究了「彈簧測力計」之後,就可以對彈簧測力計進行改進:


首先,讓學生找出普通彈簧測力計的缺點:

不能記憶數據(一旦指針回零,就不能再顯示剛才的數據);不能在暗處讀數;不能測
壓力。


然後,讓學生協作學習、分組討論,就可能解決上述問題:

在針軌上加一塑料泡沫片;
加一個小燈泡電路;
將彈簧測力計頂部打開,
接入一受力裝
置與指針和彈簧連接。

14
.缺點利用法:


1
)定義:針對所研究內容中的缺點和不足,將錯就錯、變害為利、變廢為寶,找到
知識的應用途徑。


2
)舉例:重力的方向豎直向下易使物體下落破碎是缺點,但同時也可以利用這一點
製成打樁機、重錘,懸掛物體等等。再如,導體中電流過大,產生大量熱量而引起火災是缺
點,但正是據此製成了電熱器來為我們服務。

15
.組合法:


1
)定義:通過不同原理、不同技術、不同方法、不同現象、不同器材等組合,去設
計創造、解決問題。


2
)舉例:將電流表、電壓表組合使用,去測量電阻。

16
.逐漸逼近法:


1
)定義:是指在解決某些問題時,讓學生設計逐漸逼近的實驗及其過程,然後根據
實驗現象的發展趨勢和走向,進行理想化推理,從而推出結論或規律。


2
)舉例:在研究「牛頓第一定律」時,可以讓學生設計阻力逐漸減小的三個斜面實
驗,根據實驗現象得出「阻力越小,速度變化越慢」,最終進行理想化推理,得到「當阻力
為零時物體做勻速直線運動的結論」。

17
.反證法:


1
)定義:是指在解決某些問題時,若直接證明該問題的存在有困難,可以讓學生設
計該問題不存在的情景,通過該情景不成立,從而推出原來問題的存在。


2
)舉例:在研究「二力平衡條件」時,直接證明二力平衡必須在同一物體上很困難,
可以設計一個可以分為兩半的物體,
當將該物體分為兩個物體後,
發現二力不平衡了,
從而

說明了一對平衡力必須作用在同一個物體上。

④ 初中物理常見的科學方法有哪些

物理是一種理科課程.初中物理呢,是應用物理的知識來解釋日常生活當中的許多現象的學科.比較貼近於生活.也來自生活.要是想學好物理呢,就必須有合適的方法.如果沒有合適的方式方法的話.你根本就學不會物理的,因為物理是有邏輯性的.那麼怎麼學好初中物理這門學科呢?有什麼樣的方法可以學好物理呢?

初中物理思維導圖

第五、不懂就問

發現自己有不會的地方,一定要及時的問同學或者是老師.不懂就問才是最好的學習方法,這樣就把所有的知識點都放在你的腦子里邊了.成為你自己的東西了,而不是別人的東西.

關於怎麼學好初中物理的方法技巧已經告訴給大家了,希望同學們能夠按照上面的方式方法進行學習,對於你們提高成績是很有幫助的.

⑤ 物理學里都有什麼學科

● 經典力學及理論力學(Mechanics)研究物體機械運動的基本規律的規律 ● 電磁學及電動力學(Electromagnetism and Electrodynamics)研究電磁現象,物質的電磁運動規律及電磁輻射等規律 ● 熱力學與統計物理學(Thermodynamics and Statistical Physics)研究物質熱運動的統計規律及其宏觀表現 ● 相對論和時空物理(Relativity)研究物體的高速運動效應,相關的動力學規律以及關於時空相對性的規律 ● 量子力學(Quantum mechanics)研究微觀物質運動現象以及基本運動規律 此外,還有: 粒子物理學、原子核物理學、原子分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學、聲學、電磁學、光學、無線電物理學、熱學、量子場論、低溫物理學、半導體物理學、磁學、液晶、醫學物理學、非線性物理學、計算物理學和空氣動力學等等。 通常還將理論力學、電動力學、熱力學與統計物理學、量子力學統稱為四大力學。

⑥ 物理科學家初中物理裡面涉及到哪些科學家(都有什麼

初中物理中出現的物理學家1、奧斯特(丹麥)實驗說明:通電周圍存在磁場(1820年),實現了「電生磁」.2、法拉第(英國)發現了電磁感應現象(1831年),實現了磁生電.3、歐姆(德國)定律的內容是:一段導體中的電流與這段導體兩端的電壓成正比,與這段導體的電阻成反比.公式是:I=U/R.4、焦耳(英國)定律的內容是:通電導體放出的熱量與通過導體的電流的平方、導體電阻、通電時間成正比.公式是:Q=I2Rt.5、電量、電流、電壓、電阻、電功率的單位分別是庫侖、安培、伏特、歐姆、瓦特.6、發現了地球磁偏角的中國人是:沈括.7、真空中的光速是物體運動的極限速度是愛因斯坦提出的.8、中國的墨翟首先進行了小孔成象的研究.9、牛頓(英國)的貢獻是:創立了牛頓第一運動定律.10、伽利略(義大利)率先進行了物體不受力運動問題的研究,得出的結論是:一切運動著的物體,在沒有受到外力作用時,它的速度保持不變,並一直運動下去.11、義大利的托里拆利首先測定了大氣壓的值為1.013×105帕.12、阿基米德原理的內容是:浸在液體里的物體受到液體豎直向上的浮力,浮力的大小等於物體排開液體受到的重力.公式是:F浮=G排.13、迪卡爾(法國)研究了物體不受其他物體的作用,它的運動就不會改變運動方向.14、力、壓強、功率、功、能、頻率的單位分別是牛頓、帕斯卡、瓦特、焦耳、焦耳、赫茲.15、瑞典的攝爾修斯制定了攝氏溫標.16、熱力學溫標的創始人是英國的開爾文.17、攝氏溫度、熱力學溫度、熱量的單位分別是攝爾修斯、開爾文、焦耳.

⑦ 物理學的都是什麼

物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。它的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一門自然科學學科。

物理學研究的領域可分為下列四大方面:
1. 凝聚態物理:研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態相包括超流和波色-愛因斯坦凝聚態(在十分低溫時,某些原子系統內發現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,採用此名。
2. 原子、分子和光學物理:研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;准確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂,核合成等核內部現象則屬高能物理。 分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光的基本特性及光與物質在微觀領域的相互作用。
3. 高能/粒子物理:粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。
4. 天體物理:天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需用紅外,超紫外,伽瑪射線和x-射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發現了宇宙在膨脹,促進了宇宙的穩定狀態論和大爆炸之間的討論。1964年宇宙微波背景的發現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型;它包括宇宙的膨脹,黑能量和黑物質。 從費米伽瑪-射線望運鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發現。
物理學(Physics):物理現象、物質結構、物質相互作用、物質運動規律

物理學研究的范圍 ——物質世界的層次和數量級
空間尺度:
原子、原子核、基本粒子、DNA長度、最小的細胞、太陽山哈勃半徑、星系團、銀河系、恆星的距離、太陽系、超星系團等。人蛇吞尾圖形象地表示了物質空間尺寸的層次。
微觀粒子Microscopic:質子 10⁻¹⁵ m
介觀物質mesoscopic
宏觀物質macroscopic
宇觀物質cosmological 類星體 10²⁶m
時間尺度:
基本粒子壽命 10⁻²⁵s
宇宙壽命 10¹⁸s
按空間尺度劃分:量子力學、經典物理學、宇宙物理學
按速率大小劃分: 相對論物理學、非相對論物理學
按客體大小劃分:微觀、介觀、宏觀、宇觀
按運動速度劃分: 低速,中速,高速
按研究方法劃分:實驗物理學、理論物理學、計算物理學
分類簡介
●牛頓力學(Mechanics)與理論力學(Rational mechanics)研究物體機械運動的基本規律及關於時空相對性的規律
●電磁學(Electromagnetism)與電動力學(Electrodynamics)研究電磁現象,物質的電磁運動規律及電磁輻射等規律
●熱力學(Thermodynamics)與統計力學(Statistical mechanics)研究物質熱運動的統計規律及其宏觀表現
●相對論(Relativity)研究物體的高速運動效應以及相關的動力學規律
●量子力學(Quantum mechanics)研究微觀物質運動現象以及基本運動規律
此外,還有:
粒子物理學、原子核物理學、原子與分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學等等。
研究領域
物理學研究的領域可分為下列四大方面:
1.凝聚態物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態相包括超流和波色-愛因斯坦凝聚態(在十分低溫時,某些原子系統內發現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,採用此名。
2.原子,分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;准確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂,核合成等核內部現象則屬高能物理。 分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光的基本特性及光與物質在微觀領域的相互作用。
3.高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。現正尋找中。
4.天體物理——天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需用紅外,超紫外,伽瑪射線和x-射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發現了宇宙在膨脹,促進了宇宙的穩定狀態論和大爆炸之間的討論。1964年宇宙微波背景的發現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型;它包括宇宙的膨脹,黑能量和黑物質。 從費米伽瑪-射線望運鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發現。尤其是今後數年內,圍繞黑物質方面可能有許多發現。
物理學史
●伽利略·伽利雷(1564年-1642年)人類現代物理學的創始人,奠定了人類現代物理科學的發展基礎。
● 1900-1926年 建立了量子力學。
● 1926年 建立了費米狄拉克統計。
● 1927年 建立了布洛赫波的理論。
● 1928年 索末菲提出能帶的猜想。
● 1929年 派爾斯提出禁帶、空穴的概念,同年貝特提出了費米面的概念。
● 1947年貝爾實驗室的巴丁、布拉頓和肖克萊發明了晶體管,標志著信息時代的開始。
● 1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子。
● 1958年傑克.基爾比發明了集成電路。
● 20世紀70年代出現了大規模集成電路。
物理與物理技術的關系:
● 熱機的發明和使用,提供了第一種模式:技術—— 物理—— 技術
● 電氣化的進程,提供了第二種模式:物理—— 技術—— 物理
當今物理學和科學技術的關系兩種模式並存,相互交叉,相互促進「沒有昨日的基礎科學就沒有今日的技術革命」。例如:核能的利用、激光器的產生、層析成像技術(CT)、超導電子技術、粒子散射實驗、X 射線的發現、受激輻射理論、低溫超導微觀理論、電子計算機的誕生。幾乎所有的重大新(高)技術領域的創立,事先都在物理學中經過長期的醞釀。
物理學的方法和科學態度:提出命題 → 理論解釋 → 理論預言 → 實驗驗證 →修改理論。
現代物理學是一門理論和實驗高度結合的精確科學,它的產生過程如下:
①物理命題一般是從新的觀測事實或實驗事實中提煉出來,或從已有原理中推演出來;
②首先嘗試用已知理論對命題作解釋、邏輯推理和數學演算。如現有理論不能完美解釋,需修改原有模型或提出全新的理論模型;
④新理論模型必須提出預言,並且預言能夠為實驗所證實;
⑤一切物理理論最終都要以觀測或實驗事實為准則,當一個理論與實驗事實不符時,它就面臨著被修改或被推翻。
● 怎樣學習物理學?
著名物理學家費曼說:科學是一種方法,它教導人們:一些事物是怎樣被了解的,什麼事情是已知的,了解到了什麼程度,如何對待疑問和不確定性,證據服從什麼法則;如何思考事物,做出判斷,如何區別真偽和表面現象?著名物理學家愛因斯坦說:發展獨立思考和獨立判斷的一般能力,應當始終放在首位,而不應當把專業知識放在首位.如果一個人掌握了他的學科的基礎理論,並且學會了獨立思考和工作,他必定會找到自己的道路,而且比起那種主要以獲得細節知識為其培訓內容的人來,他一定會更好地適應進步和變化 。
● 學習的觀點:從整體上邏輯地,協調地學習物理學,了解物理學中各個分支之間的相互聯系。
● 物理學的本質:物理學並不研究自然界現象的機制(或者根本不能研究),我們只能在某些現象中感受自然界的規則,並試圖以這些規則來解釋自然界所發生任何的事情。我們有限的智力總試圖在理解自然,並試圖改變自然,這是物理學,甚至是所有自然科學共同追求的目標。
以物理學為基礎的相關科學:化學,天文學,自然地理學等。
學科性質
基本性質
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。物理學從研究角度及觀點不同,可分為微觀與宏觀兩部分,宏觀是不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的,微觀物理學隨著科技的發展理論逐漸完善。
其次,物理又是一種智能。
誠如諾貝爾物理學獎得主、德國科學家玻恩所言:「如其說是因為我發表的工作里包含了一個自然現象的發現,倒不如說是因為那裡包含了一個關於自然現象的科學思想方法基礎。」物理學之所以被人們公認為一門重要的科學,不僅僅在於它對客觀世界的規律作出了深刻的揭示,還因為它在發展、成長的過程中,形成了一整套獨特而卓有成效的思想方法體系。正因為如此,使得物理學當之無愧地成了人類智能的結晶,文明的瑰寶。
大量事實表明,物理思想與方法不僅對物理學本身有價值,而且對整個自然科學,乃至社會科學的發展都有著重要的貢獻。有人統計過,自20世紀中葉以來,在諾貝爾化學獎、生物及醫學獎,甚至經濟學獎的獲獎者中,有一半以上的人具有物理學的背景;——這意味著他們從物理學中汲取了智能,轉而在非物理領域里獲得了成功。——反過來,卻從未發現有非物理專業出身的科學家問鼎諾貝爾物理學獎的事例。這就是物理智能的力量。難怪國外有專家十分尖銳地指出:沒有物理修養的民族是愚蠢的民族!
總之,物理學是對自然界概括規律性的總結,是概括經驗科學性的理論認識。
六大性質
1.真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。
2.和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多麼的和諧有序。物理學上的幾次大統一,也顯示出美的感覺。牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統一了。麥克斯韋電磁理論的建立,又使電和磁實現了統一。愛因斯坦質能方程又把質量和能量建立了統一。光的波粒二象性理論把粒子性、波動性實現了統一。愛因斯坦的相對論又把時間、空間統一了。
3.簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。
4.對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。
5.預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。例如麥克斯韋電磁理論預測電磁波存在,盧瑟福預言中子的存在,菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑,狄拉克預言電子的存在。
6.精巧性:物理實驗具有精巧性,設計方法的巧妙,使得物理現象更加明顯。

⑧ 有哪些物理科學小實驗

你好,生活中有趣的化學實驗有很多現象,下面舉幾個例子。 1.口吐「仙氣」: 實驗用品:尖嘴玻璃管、酒精燈、有色塑料管、葯棉。汽油、肥皂液、甘油。實驗原理:汽油蒸氣可以點燃。當汽油和空氣混和後遇火會發生劇烈的燃燒並發出爆炸聲。實驗操作:在長20厘米尖嘴玻璃管外套一層有色的塑料管,管內放一段吸飽汽油的棉花球。把尖嘴管對著酒精燈火焰,向玻管的另一端吹氣。當氣從尖嘴管出來,遇火便燃燒起來。離開火焰繼續燃燒。如果向玻管吹氣力量稍大時,火焰可以離開尖嘴4~5厘米遠,並呈現明亮的藍色的火焰,十分好看。這時把玻管尖端浸入滴有少量甘油的肥皂液。取出後,向玻管另一端吹氣。當肥皂泡連串出現在空中時,用燃著的酒精棉球去點一個個的肥皂泡,便發出一連串輕微的爆炸聲和火球,非常有趣。 2.火滅畫現:實驗用品: 100毫升燒杯、毛筆、刷子、玻棒、玻璃板、彩色畫片。硼砂濃溶液、明礬飽和溶液、火葯棉、丙酮、鋁粉。實驗原理:畫片經過硼砂和明礬溶液先後處理過後,在畫面上就有一層不易燃燒的保護層。火葯棉燃燒迅速,所以畫片不會燒壞。實驗操作:取一張彩色畫片,用毛筆在畫片上塗一層硼砂溶液,晾乾後塗一層明礬溶液,再晾乾後備用。將火葯棉放在小燒杯里加入丙酮和鋁粉,調勻。然後把火葯棉的丙酮濃稠的液體,刷在玻璃板上,刷的面積比畫片略大一些。重復刷3~4遍,干後揭下貼在畫片上。這時用火柴點燃火葯棉。當火葯棉迅速燒完時,美麗的畫面就出現在眼前。 3.燒不著紙的火:實驗用品:蒸發皿、玻棒、鑷子、紙, 二硫化碳、四氯化碳。實驗原理:二硫化碳是容易燃燒的液體,但四氯化碳卻不能燃燒。二硫化碳燃燒生成二氧化碳和二氧化硫,同時放熱。因有四氯化碳在裡面,四氯化碳大量揮發時帶走了不少熱量,因此火焰的溫度被降低而達不到紙的著火點。實驗操作: 在蒸發皿中倒入6毫升二硫化碳和16毫升四氯化碳,攪拌均勻。用火點燃後,可以看到淡藍色的火焰。這時用鑷子夾一張普通的紙放在火焰上,紙卻燒不著。

⑨ 物理學類專業有哪些

高考物理學類專業共計有4個,名單分別為核物理專業、應用物理學專業、物理學專業、聲學專業。

物理學類專業名單一覽表
專業代碼 物理學類
70201 物理學
70202 應用物理學
70203 核物理
070204T 聲學
物理學專業簡介:
物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。它的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一門自然科學學科。

本專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。

應用物理學專業簡介:
應用物理學專業主要培養掌握物理學基本理論與方法,具有良好的數學基礎和基本實驗技能,掌握電子技術、計算機技術、光纖通信技術、生物醫學物理等方面的應用基礎知識、基本實驗方法和技術,能在物理學、郵電通信、航空航天、能源開發、計算機技術及應用、光電子技術、醫療保健、自動控制等相關高校技術領域從事科研、教學、技術開發與應用、管理等工作的高級專門人才。

本專業培養能適應我國社會主義現代化建設需要的,德智體全面發展的,掌握物理學的基本理論與方法,能在物理學或相關的科學技術領域從事科研、教學、技術開發和相關的管理工作的高級專門人才。本專業旨在提供一種高層次的素質教育而不僅僅是一種專業教育,使學生掌握基本的物理應用的理論與方法,掌握用計算機解決問題的基本技能。接受物理應用熏陶的優勢畢業生可以適應多方面的社會需求,良好的自學能力使學生只要經過有關的業務培訓,就能成為各方面的骨幹。

核物理專業簡介:
核物理專業主要通過對原子核物理學、核電子學、核物理實驗方法、核技術應用等專業基礎知識的學習,掌握核物理專業的基本科學知識和體系,並受到相關專業實驗的訓練,從而具有良好的數理基礎和核物理學科的理論基礎,具有較深入的專業知識和熟練的實驗技能,能夠適應核物理學科各方向發展的基本需要。

本專業培養在核物理與核科學技術領域內具有扎實、寬厚的理論基礎、熟練的實驗技能並獲得科學研究的系統訓練,具有較強的工作適應能力和後勁,能在工業、農業、國防、醫學及環保及其相關領域從事核物理專業基礎研究、應用研究、教學、管理等的高級專門人才。

⑩ 科學包括哪些 基礎科學包含哪些

科學包括物理、化學、生物三科,基礎科學包括數學、物理學、化學、生物學、天文學、地球科學、邏輯學七門基礎學科及其分支學科、邊緣學科。邊緣科學有物理化學、化學物理、生物物理、生物化學、地球物理、地球化學、地球生物等。

1、科學是小學、初中和高中的一門重要的學科,2017年9月1日開始,從小學一年級開始上科學課(未分科)。

在小學,科學課學習科學知識,培養學生科學素養,激發學生探究世界的興趣,從小學一年級開始,將科學作為基礎性課程。

在中考中佔有較高的分值(各地的分值不同),其主要包含了物理、化學、生物三科內容;高中將科學細分成物理、化學、生物三科,在高考中(理科)佔300分。

2、基礎科學以自然現象和物質運動形式為研究對象,探索自然界發展規律的科學。研究成果是整個科學技術的理論基礎,對技術科學和生產技術起指導作用。

(10)有什麼科學物理擴展閱讀:

根據當前我國基礎研究的現狀和科學發展趨勢,學科發展布局的主要思路是立足於中國現狀,以世界主要發達國家作為參照系,全面布局,協調發展,建立靈活柔性的調節機制。

因地、因時制宜地確定投入重點,穩步推進基礎學科的發展,大力培育新興與交叉學科,高度重視自然科學與人文社會科學的交叉。

1、數學

數學是對現實世界數與形簡潔、高效、優美的描述,是有內部抽象性和外部有效性的學科。一個國家的數學水平,在很大程度上決定著國家科學技術的整體水平。

應用數學是數學應用於科學與技術的紐帶,包括:計算數學、概率論、數理統計、運籌學、微分方程與數學物理、控制理論、工業應用數學、組合數學、離散數學、計算機數學等。

2、物理學

物理學研究物質構成及其相互作用的基本規律,其研究成果推動著現代技術的發展。21世紀物理學面臨著粒子物理理論、統一所有作用力的理論、暗物質、暗能量等重大科學問題的重大挑戰。

3、化學

化學是在原子、分子及分子以上層次研究物質的合成與轉化、分離與分析、結構與形態、功能與理論以及相關復雜體系化學過程的科學。

4、天文學

天文學研究宇宙中天體和天體系統的形成、結構、活動和演化。21世紀天文學與物理學等學科的結合,使人類開始有條件向「最大」尺度的物理規律、「最深」層次的物質結構等重大科學問題發起沖擊。

5、地球科學

地球科學研究人類的生存環境——地球,對解決可持續發展中面臨的資源、環境、災害等問題至關重要。當代地球科學研究的特徵,一是對地觀測的迅速發展,二是地球系統科學的形成。

6、生物科學

生物科學是研究生命現象和過程的基礎科學,包括生物的結構、分類、形態、生理、遺傳、發育、進化以及生物與環境的關系等方面。

7、邏輯學

是研究推理形式有效性的學科。它是構造形式系統、表達知識、研發智能系統的必要工具。

8、邊緣科學

是在兩個或兩個以上不同學科的邊緣交叉領域生成的新學科的統稱。邊緣學科的生成一般有兩種情況。一種是某些重大的科研課題涉及到兩個或兩個以上學科領域。

在研究過程中,便在這些相關領域的結合部產生了新興學科。諸如物理化學、生物力學、技術經濟等。

另一種情況,是運用一門學科的理論和方法去研究另一學科領域的問題,也會形成一些邊緣學科。諸如射電天文學和天體物理等。

閱讀全文

與有什麼科學物理相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:467
乙酸乙酯化學式怎麼算 瀏覽:1141
沈陽初中的數學是什麼版本的 瀏覽:1060
華為手機家人共享如何查看地理位置 瀏覽:791
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:618
數學c什麼意思是什麼意思是什麼 瀏覽:1111
中考初中地理如何補 瀏覽:1061
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:485
數學奧數卡怎麼辦 瀏覽:1092
如何回答地理是什麼 瀏覽:811
win7如何刪除電腦文件瀏覽歷史 瀏覽:851
大學物理實驗干什麼用的到 瀏覽:1199
二年級上冊數學框框怎麼填 瀏覽:1408
西安瑞禧生物科技有限公司怎麼樣 瀏覽:558
武大的分析化學怎麼樣 瀏覽:986
ige電化學發光偏高怎麼辦 瀏覽:1082
學而思初中英語和語文怎麼樣 瀏覽:1316
下列哪個水飛薊素化學結構 瀏覽:1144
化學理學哪些專業好 瀏覽:1232
數學中的棱的意思是什麼 瀏覽:765