导航:首页 > 数字科学 > 高等代数线性代数学什么

高等代数线性代数学什么

发布时间:2022-11-27 20:20:08

① 高等代数和线性代数的区别

高等代数课程,一般是对于数学专业开设的一门学科,而在之后学生还会学习到抽象代数(近世代数)等等学科。
而对于线性代数是主要针对理工类学生开设的一门学科,所以线性代数考虑到代数的抽象情况和学生的学习,从而对高等代数的内容进行了删减。
希望有所帮助。

② 线性代数是学来干什么的

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的着作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼兹( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange )在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把着名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。着名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre )一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的着名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。 矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

③ 高等代数和线性代数的区别

高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数一般包括两部分:线性代数初步、多项式代数。
高等代数在初等代数的基础上进一步扩充了研究对象,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

线性代数是从解线性方程组和讨论二次方程的图形等问题而发展起来的一门数学学科,它是一门很重要的基础学科。包括:行列式、矩阵、n维向量、线性方程组、相似矩阵及二次型、G向量等等。

从课程内容上来说高等代数的绝大部分是线性代数,中间将一部分多项式代数,最后可能会讲些二次型等非线性的代数知识。线代是非数学专业的课程,高代则是数学专业课程。课程定位和所学知识的侧重点是不同的。
总的来说线代侧重计算能力的培养,对于背后的复杂的数学原理可以不求甚解,但是计算要准确,能解决实际问题。高代和数分一样,都是数学专业最最基础的专业课,重在对学生基本数学素养的训练,不仅要求计算能力,而且更重要的是明白知识体系和结构,特别是定义的准确理解,定理的证明思路,推论是什么等等。这些基础的证明往往是线代所忽视的。
知识内容上来说,高代的核心内容除了矩阵理论外,更加偏重于线性空间的结构理论和线性算子理论,后面这两部分对于线代来说不是重点。

④ 高等代数都讲些什么具体分那几大块重点分别是什么难点呢

一般分为多项式,矩阵,空间以及线性函数部分。有的教材会加一些张量与外代数的内容。
当然不同教材注重点不同,比如北大蓝以中的《高等代数简明教程》就是注重变换而不像传统教材那样注重矩阵。从矩阵上升到变换这是理论的一大提升。
比如我们知道线性方程组的解本质上是向量空间和矩阵理论的一个简单应用。儿子从伽罗瓦理论问世以后,我们认识到高次方程求根本质上是域的结构问题,是域扩张和域的自同构问题。
代数学研究的对象个人认为应该是各种代数系统以及相互关系。而高等代数正是围绕着这些并以中学代数知识为基础来研究这些问题。
而同时高代又是以后的抽象代数、李代数……的基础。据个人观察发现,如今好一点的学校考研高代命题都喜欢以李代数为背景来出题。实际上代数学从一定的高度出发来看问题会发现问题很简单,他同分析的思维方式不经相同。
当然从一定的高度看分析也有一些简单的东西,比如在数学分析中我们知道函数可积的充要条件是间断点不构成区间。而从实变函数论的角度看就是不连续点的测度为零,显然从实函角度更能反应问题的本质。所以数学的学习从一定的高度来看很重要。

⑤ 线性代数 高等代数

线性代数 高等代数?“高等数学”“高等代数”这些叫法都是苏联特色,欧美系统没有这种“高等”叫法,都是叫linear algebra(好吧,有些学校可能有advanced linear algebra..)中国数学教育受苏联影响很大,也就继承了这种课程命名的方式。

在我国高校的课程框架内,线性代数通常是给非数学理工科专业开的线性代数课,而高等代数是给数学专业学生开的线代课。线性代数的重点是行列式、矩阵及其变换、线性方程组、二次型等等相对具体的概念,而且重视计算;而数学系的高等代数,可能会重点讨论一般域上的线性空间、线性变换,然后会强调矩阵和线性变换的联系。有答主提到高代会讲多项式,其实也很好理解,全体多项式就构成了一个线性空间,求导或者积分都是其上的线性变换,自然属于线代的讨论范围;行列式本身就是个多元多项式;而判别式、结式等等也都是多项式理论和矩阵理论相连结的地方。然后 特征值的基本对称多项式给出了特征多项式的系数,等等。

最后,在一部分数学家眼里,线性代数就是对线性结构的研究,而线性结构远不止线性空间,所以他们会认为 范畴论、很大一块交换代数(比如PID上面的有限生成模结构定理)等等 也属于“线性代数”。不过也不用担心,我至今没见过按这种标准教本科线代的——哦,听说张益唐确实干过 在线代课上讲PID上模论 的事情。

⑥ 线性代数与高等代数的区别是什么

对于工科类的大学生来说,线性代数和高等代数是他们在大学生涯中必须要学会的一门必修课,并且线性代数和高等代数是不允许挂科的。对于文科类的专业以及大学来说,是不需要学习线性代数和高等代数的,所以对于文科类的专业和学校来说,她们是不存在线性代数和高等数学的。那么现在问题就来了,线性代数和高等代数之间到底有什么样的区别呢?

并且,如果学习过高等代数和线性代数的人都会知道,高等代数这门课程远远要比线性代数这门课程难得多,高等数学这门课程我们都知道,这是专门为工科类的专业做的一门学科,但是工科类的人并不一定会学过高等代数,原因就是高等代数的难度系数比较高,并且高等代数的难度系数远远高于线性代数的难度系数。



⑦ 高等代数学学什么

入门先学线性代数,再学微积分,华罗庚的数论导引非常有必要看一下,实在买不来了买哈代(欧洲代数学领袖人物)的,如果你家是大城市可以,小城市一般大学的在那里都买不住,当当网上可以买

⑧ 高等代数怎么学能学好和线性代数有什么区别

本人学的专业就是数学与应用数学,该专业有两门基础课程,其中一门课程就是高等代数,如今考上研了,而且高等代数是数学专业考研必考科目,所以对于“高等代数怎么学能学好?”这个问题,我可以给出经验比较丰富的回答。下面跟我一起来了解如何学好高等代数吧。

阅读全文

与高等代数线性代数学什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:452
乙酸乙酯化学式怎么算 浏览:1124
沈阳初中的数学是什么版本的 浏览:1038
华为手机家人共享如何查看地理位置 浏览:766
一氧化碳还原氧化铝化学方程式怎么配平 浏览:603
数学c什么意思是什么意思是什么 浏览:1088
中考初中地理如何补 浏览:1039
360浏览器历史在哪里下载迅雷下载 浏览:469
数学奥数卡怎么办 浏览:1068
如何回答地理是什么 浏览:791
win7如何删除电脑文件浏览历史 浏览:833
大学物理实验干什么用的到 浏览:1177
二年级上册数学框框怎么填 浏览:1386
西安瑞禧生物科技有限公司怎么样 浏览:539
武大的分析化学怎么样 浏览:970
ige电化学发光偏高怎么办 浏览:1064
学而思初中英语和语文怎么样 浏览:1287
下列哪个水飞蓟素化学结构 浏览:1127
化学理学哪些专业好 浏览:1213
数学中的棱的意思是什么 浏览:744