导航:首页 > 生物信息 > 生物中TGS是什么意思

生物中TGS是什么意思

发布时间:2022-04-15 12:04:47

⑴ 什么是基因干扰,列举基因干扰的主要方法以及原理

嗨~来看点更专业的回答吧 ♪(・ω・)ノ

基因干扰=RNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的转录或翻译来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。

由于RNAi具有高度的序列专一性,可以特异地沉默基因,从而获得基因功能丧失或基因表达量的降低。因此可以作为功能基因组学研究的一种强有力的工具。在实际应用中,通过病毒载体表达小核RNA(snRNA)进行RNAi已经非常成熟,能够有效、快捷和持久地干扰体内基因的表达。广泛应用到基因功能研究,药物靶点筛选,细胞信号传导通路分析和疾病治疗等方向。

应用范围

1.基因功能研究:RNAi具有高效特异性抑制基因表达的特点,运用病毒载体介导shRNA干扰可以调控基因表达,进而研究基因功能;
2.信号通路研究:可以运用该技术进行体内体外相关信号通路及作用机制的研究;
3.构建疾病模型:通过病毒载体介导shRNA干扰可构建转基因抑制小鼠模型;
4.基因治疗:RNAi被用于基因表达异常升高引起的疾病,如:肿瘤和病毒感染等;
5.药物开发:利用RNAi特异性高效地抑制基因的表达,获得基因功能抑制表型,进而大规模地筛选出基因靶点,从而实现短时间内药靶在细胞水平和动物水平的筛选和评定。

如果您正在研究或者学习神经科学,生物病毒,基因治疗等方向,亦或是正在使用各类工具病毒做科研实验,可以网络搜索布林凯斯braincase,官网上有更详细的案例分析和专业解读哦~

⑵ 蛋白质抑制基因表达,luciferase结果是什么样

蛋白质抑制基因表达,luciferase结果是什么样
RNA干扰的分子抑制机制的三种方式及原理
转录抑制
与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。
转录后抑制
不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。
翻译抑制
Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

⑶ 生物化学或营养学中,外源脂肪从摄取到最后储存在脂肪组织中的流程是怎么肝脏合成的内源脂肪呢

外源脂肪(甘油三酯,胆固醇脂)摄取后,

在胰脂酶、(胃脂酶)的作用下分解,被小肠吸收,是甘油一酯、(游离脂肪酸以及胆固醇)

然后在(小肠上皮细胞)再合成甘油三酯,和(胆固醇)被一起包裹进入乳糜微粒CM。进入(淋巴)循环

到达脂肪组织(以及肌肉组织)后,(位于CM上的apo-C II激活位于脂肪、肌肉细胞上的脂蛋白蛋白酶lipoprotein lipase-LPL), 将甘油三酯分解成脂肪酸和甘油,(吸收进入细胞),这些物质可作为原料再重新合成甘油三酯储存

内源脂肪代谢涉及VLDL,IDL,LDL和HDL,简单来说,VLDL携带TGs(甘油三脂)与胆固醇,进入血液循环,(位于VLDL上的apo-C II激活位于脂肪、肌肉细胞上的脂蛋白蛋白酶lipoprotein lipase-LPL), 将甘油三酯分解成脂肪酸和甘油,(吸收进入细胞),这些物质可作为原料再重新合成甘油三酯储存。

VLDL和CM经LPL消化后的产生IDL,LDL,胆固醇含量依次增高。

HDL的代谢机制目前还没有公认的解释,小肠上皮与肝脏中合成,普遍认为其能够从体内回收游离胆固醇以及其他脂蛋白中的胆固醇。

⑷ 基因沉寂的术语

PTGS在多种生物中有共性,对PTGS的激活和与其相关的RNA降解调控过程有了初步的认识。也发现植物病毒在转基因植物和非转基因植物中都能和转基因一样诱发转录后基因沉默。令人吃惊的是,转基因植物的共抑制现象(转基因与同源的内源基因一起失活)、转基因植物的病毒抗性和非转基因植物对病毒正常自然侵染的抗性、真菌的quelling现象(真菌中的共抑制)、各种动物的RNA干扰(RNA interference,RNAi)以及转座因子的转座失活等这些表面看来完全不相关的现象中竟然存在着非常相似的基因沉默机制,即PTGS。这种基因沉默可能是生物体的本能的反应,因为无论是转基因、转座因子还是病毒,对植物而言都是诱发突变的外来侵入的核酸,植物为保护自己,在长期的生物进化中,形成了基因沉默这种限制外源核酸入侵的防卫保护机制。 在线虫Caenorhabditis elegans中,RNAi敏感性缺失突变体中转座子的转座活性增强,表明转座子的转座失活是被一种类似PTGS的过程调控的,这一过程与RNAi作用有关,是通过细胞内双链RNA互作引起同源特异性的RNA降解。
PTGS中的RNA在细胞质中的特异性降解并不需要RNA结合到核糖体上,这与通常的RNA降解代谢调控需要与翻译相关连不同。Bass对RNAi激发的RNA特异性降解机制进了体外研究,发现通过添加外源的双链RNA或靶标mRNA可以激活PTGS,这与早期在植物中发现的双链RNA介导PTGS一致。通过对发生PTGS的转基因植物进行嫁接实验和分析植物病毒病的恢复现象观察到,PTGS是一种系统性的过程,称为系统获得性沉默(systemic acquired silencing,SAS)。PTGS的系统传播性在真菌和线虫中也得到了证明。进一步研究发现,转基因或病毒侵染介导的PTGS植物中普遍存在着大量的序列特异性正义和反义的大约25个核苷酸的小分子RNA,而正常的非转基因植物和没有发生PTGS的植物中则没有。这些小分子RNA作为信号分子,在植物中与特定的运输蛋白特异结合,防止被核酸酶的降解,通过胞间连丝和韧皮部筛管运送到植物体的各个部位,使PTGS具有系统持久性。这一运转过程与植物病毒在植物体内的运输有着十分相近的机制。这些-25nt RNA的积累需要转基因的转录或病毒的复制,与其它双链RNA等多种异常RNA相比,-25nt RNA对于PTGS的激发、靶标RNA的特异性降解以及PTGS的系统性维持更为重要。
病毒对RNA活性影响
早在20世纪70年代初人们就发现,病毒或类病毒侵入植物后,RNA依赖性的RNA聚合酶(RNA-dependent RNA polymerase,RdRP)的活性明显提高。RdRP是生物体内普遍存在的一种RNA聚合酶,在体外能以单链RNA或单链DNA甚至以双链RNA为模板,合成与模板互补RNA,合成的cRNA可长达100个核苷酸。1993年,Lindbo等认为在PTGS植物中的RdRP与PTGS同源依赖性的RNA特异性降解有关。最近Mour-rain等从缺失转基因介导的PTGS拟南芥突变体中分离的sgs2(suppressor of gene silencing)和sde1(silencing defective)两个基因与番茄中的RdRP基因十分相似,支持了Lindbo的观点。粗糙脉孢菌Neurospora crassa的qde-2(quilling-defective gene)和线虫C.elegans的rde-1(RNA interference-deficient gene)与蕃茄的RdRP基因也具有很高的同源性。RdRP基因剔除实验证明,RdRP对RNAi和PTGS尤为重要。这些研究结果表明,从比较低等的生物藻类、真菌到高等的植物再到动物线虫、锥虫、果蝇等中可能存在着一个由共同祖先进化来的相似的抵抗外来DNA侵入自身基因组的本能防卫机制。
RNAi引发的PTGS作为生物体中一种不完全的原始的生物免疫系统,在植物抗病毒中研究得比较详细。研究发现,植物病毒的RNA可以直接作为PTGS的激发子,并且可能通过病毒来源的基因引发转基因植物对病毒的终生系统抗性,这和PTGS的从病毒侵染点传播到整个植株以及线虫中PTGS的系统性一起证明了PTGS具有系统传播性。缺少高效PTGS的植物突变体虽然在表型上几乎没有变化。拟南芥PTGS突变体sgs2和sgs3对黄瓜花叶病毒(cucumber mosaic virus,CMV)的敏感性提高了,而突变体sde1对烟草花叶病毒(tobacco mosaic virus,TMV)和烟草脆裂病毒(tobacco rattle virus,TRV)的敏感性无变化。Baulcombe研究组认为RdRP(SDE1或SGS2)对于引发产生PTGS的双链RNA是必需的,有些RNA病毒在复制中用自身的RdRP合成双链RNA直接进入PTGS网络,而不需要寄主的RdRP去激活PTGS,这些病毒如TMV、TRV能在PTGS突变体中和野生型中一样致病,而另一些病毒如CMV需要寄主的RdRP来激活PTGS,所以PTGS突变体对这些病毒的敏感性要比野生型的高。另一方面,还可能与有些病毒产生的抑制PTGS的蛋白质有关,如CMV和番茄不孕病毒(tomato aspermy virus,TAV)的2b蛋白以及马铃薯Y病毒(potato Y virus,PVY)的蚜传辅助因(helpercomponent/protease,HC-Pro)等[10]。由此可见,不同的RNA病毒是通过不同的位点进入并引发PTGS网络的。由于拟芥南PTGS突变体是通过转基因介导的PTGS筛选的,突变体对不同病毒敏感性的变化,也可能表明转基因和病毒侵染引发植物PTGS的机制是有差别的。在突变体sde1中,与PTGS有关的-25nt转基因特异性的RNA的积累明显减少,而病毒特异性的-25nt RNA的量不变,这也表明转基因和侵染病毒是通过不同途径引发PTGS的。 总之,基因沉默是基因表达调控的一种重要方式,是生物体在基因调控水平上的一种自我保护机制,在外源DNA侵入、病毒侵染和DNA转座、重排中有普遍性。对基因沉默进行深入研究,可帮助人们进一步揭示生物体基因遗传表达调控的本质,在基因克服基因沉默现象,从而使外源基因能更好的按照人们的需要进行有效表达;利用基因沉默在基因治疗中有效抑制有害基因的表达,达到治疗疾病的目的,所以研究基因沉默具有极其重要的理论和实践意义。

⑸ 谁能帮我这篇生物专业英语文章翻译了,急用,谢谢!

表观遗传学涵盖范围广泛,几次讨论过这个特殊的问题。但如何做后生调控出现的吗?为RNA介导的沉默与DNA甲基化,有证据表明他们已演变为一个组成部分,主机的防御机制抵御病毒和寄生虫的DNA .*衬底-双链RNA (双链RNA ) ,为后基因沉默( PTGS ) [或RNA干涉( RNAi技术) ]和转录后基因沉默(在TGS )阅读植物是一种常见的中间,在生命周期的许多病毒和转座子。植物病毒,知道是目标,并激发子的私人协约,及镇压的私人协约土地已经确定,在基因组中的许多这类病毒。 †这些镇压以前确定为致病determinates ,显示仍有持续进化的植物防御和病毒进攻。是否RNAi在动物提供类似功能呢?可能是:突变,损害RNA沉默在秀丽新杆线虫,结果在动员的转座因子。在TGS的植物中,细胞质的双链RNA含有启动子序列,是能够直接沉默,和去甲基化,同源的DNA 。是DNA甲基化也可以作为一个手段来镇压入侵的基因组是由病毒和转座子? ‡这是事实,在植物和丝状真菌中, DNA甲基化是主要局限于转座子和其它重复序列。在哺乳动物中,编码序列也是甲基化,可能反映了在场的转基因内含子。这也是事实果蝇,而这还不甲醇,其基因组中,出现了非常高的自发突变,从50 %至85 % -透过行动的转座因子。过程repeatinced点突变和甲基化诱导premeiotically ,均发现真菌,并repeatinced基因沉默,发现在开花植物,所有的沉默和甲醇重复序列,一个共同的特点,寄生虫的DNA分子。进一步支持来自于基因突变,在ddm1 (减少在DNA甲基化)的基因在拟南芥中,这导致在重新启动的沉默,重复序列,并激活一个家庭的转座子。 §不过,有一种意见认为, DNA甲基化是一个宿主防御机制既不证实,也不具有普遍性。 | | ddm1编码蛋白相似,染色质重塑因子sw12/snf2 ,并有其他证据显示其亲密的联系, DNA甲基化和染色质结构¶ ;因此,如果DNA的甲基化确实是一个组成部分,主机控制系统中,这似乎有可能染色质必须牵连太多。有趣的是,曾有人建议,其他后生现象,其中包括基因组印记在胎盘哺乳动物和xchromosome剂量补偿,本身可能就是从这种宿主防御机制,针对寄生虫的DNA 。

⑹ 三氯蔗糖是什么

三氯蔗糖
三氯蔗糖,分子式:C12H19Cl3O8,分子量:397.64,化学名:4,1',6',-三氯-4,1',6',-三脱氧半乳型蔗糖。是一种白色粉末状产品,极易溶于水、乙醇和甲醇,是目前唯一以蔗糖为原料生产的功能性甜味剂,其甜度是蔗糖的600倍,且甜味纯正,甜味特性十分类似蔗糖,没有任何苦后味;无热量,不龋齿,稳定性好,尤其在水溶液中特别稳定。经过长时间的毒理试验证明其安全性极高,是目前最优秀的功能性甜味剂,现已有美国、加拿大、澳大利亚、俄罗斯、中国等三十多个国家批准使用。目前,三氯蔗糖已广泛应用于饮料、食品、医药、化妆品等行业,由于三氯蔗糖是一种新型非营养性甜味剂,是肥胖症、心血管病和糖尿病患者理想的食品添加剂,因此,它在保健食品和医药中的应用不断扩大。20年来,三氯蔗糖经受了严格而又广泛的安全性评估。100多份科学研究报告得出的安全数据表明,食用蔗糖素甜味剂是安全可靠的。环境学研究报告进一步证实了蔗糖素甜味剂对鱼类和水生生物均无害处,并可生物降解. 三氯蔗糖(蔗糖素)的化学名称为1,4, 6一三氯蔗糖(TGS),是蔗糖分子中的三个羟基被氯原子选择性地取代而得到的高甜度甜味剂,1991年加拿大首先批准用于食品,甜度为蔗糖的600一650倍。其突出的特点是:(l)热稳定性好,温度和pH值对它几乎无影响,在焙烤工艺中比阿力甜更稳定,适用于食品加工中的高温灭菌、喷雾干燥、焙烤、挤压等工艺;(2) pH适应性广,适用于酸性至中性食品,对涩、苦等不愉快味道有掩盖效果;(3)易溶于水,溶解时不容易产生起泡现象,适用于碳酸饮料的高速灌装生产线。(4)甜味纯正,甜感呈现速度、最大甜味的感受强度、甜味持续时间、后味等都非常接近蔗糖,是一种综合性能非常理想的强力甜味剂。

⑺ dsrna是什么RNA干扰及其机制。要简单点啊,百科复制的就别来了,看不太懂。

dsRNA是英语Double-stranded RNA的缩写,是指双链核糖核酸。

RNA干扰机制:

1、是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。

2、病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA,即siRNA。

siRNA在细胞内RNA解旋酶的作用下解链成正义链和反义链,继之由反义siRNA再与体内一些酶结合形成RNA诱导的沉默复合物。RISC与外源性基因表达的mRNA的同源区进行特异性结合,RISC具有核酸酶的功能,在结合部位切割mRNA,切割位点即是与siRNA中反义链互补结合的两端。

被切割后的断裂mRNA随即降解,从而诱发宿主细胞针对这些mRNA的降解反应。

siRNA不仅能引导RISC切割同源单链mRNA,而且可作为引物与靶RNA结合并在RNA聚合酶作用下合成更多新的dsRNA,新合成的dsRNA再由Dicer切割产生大量的次级siRNA,从而使RNAi的作用进一步放大,最终将靶mRNA完全降解。

(7)生物中TGS是什么意思扩展阅读:

RNA干扰机制特点:

1、高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。

Holen等也证实1~100 nmol/L的双链RNA浓度对基因沉默的效果是一致的。这说明双链RNA介导的基因沉默效率是相当高的。

需要ATP:Zamore等认为RNAi过程中至少有2个步骤需要能量的供给:一是长的双链RNA被 Dicer所酶切产生双链RNA;二是在双链RNA与RISC结合解链后形成有活性的RISC。

2、特异性:Elbashir等和Brummel kamp等发现在21~23个碱基对中有1~2个碱基错配会大大降低对靶mRNA的降解效果。

3、竞争效应:Hoten等将10 nmol/L和30 nmol/L的hTF167i相比,两者的沉默基因效果无差异,但将20 nmol/L基因抑制效果很差的PSK314i和10 nmol/L的hTF167i相混和后,hTF167i产生的抑制效果明显降低。

参考资料来源:网络-dsRNA

参考资料来源:网络-RNA干扰

⑻ 什么是RNAi

RNA干扰(RNAinterference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的转录或翻译来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。

与其它基因沉默现象不同的是,在植物和线虫中,RNAi具有传递性,可在细胞之间传播,此现象被称作系统性RNA干扰(systemic RNAi)。

在秀丽隐杆线虫上实验时还可使子一代产生基因突变,甚至于可用喂食细菌给线虫的方式让线虫得以产生RNA干扰现象。RNAi现象在生物中普遍存在。2006年,安德鲁·法厄(Andrew Z. Fire)与克雷格·梅洛(Craig C. Mello)由于在秀丽隐杆线虫的RNAi机制研究中的贡献而共同获得诺贝尔生理及医学奖。

(8)生物中TGS是什么意思扩展阅读

RNA干扰现象是1990年由约根森(Jorgensen)研究小组在研究查尔酮合成酶对花青素合成速度的影响时所发现,为得到颜色更深的矮牵牛花而过量表达查尔酮合成酶,结果意外得到了白色和白紫杂色的矮牵牛花,并且过量表达查尔酮合成酶的矮牵牛花中查尔酮合成酶的浓度比正常矮牵牛花中的浓度低50倍。

约根森推测外源转入的编码查尔酮合成酶的基因同时抑制了花中内源查尔酮合成酶基因的表达。

1992年,罗马诺(Romano)和Macino也在粉色面包霉菌中发现了外源导入基因可以抑制具有同源序列的内源基因的表达。

1995年,Guo和Kemphues在线虫中也发现了RNA干扰现象。

1998年,安德鲁·法厄(AndrewZ.Fire)等在秀丽隐杆线虫(C.elegans)中进行反义RNA抑制实验时发现,作为对照加入的双链RNA相比正义或反义RNA显示出了更强的抑制效果。

从与靶mRNA的分子量比考虑,加入的双链RNA的抑制效果要强于理论上1:1配对时的抑制效果,因此推测在双链RNA引导的抑制过程中存在某种扩增效应并且有某种酶活性参与其中。

并且将这种现象命名为RNA干扰。

2006年,安德鲁·法厄与克雷格·梅洛(CraigC.Mello)由于在RNAi机制研究中的贡献获得诺贝尔生理及医学奖。

⑼ 什么是RNAi

RNAi
(RNA
interference)
即RNA干涉,是近年来发现的在生物体内普遍存在的一种古老的生物学现象,是由双链RNA(dsRNA)介导的、由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。RNAi
广泛存在于从真菌到高等植物、从无脊椎动物到哺乳动物各种生物中。同时作为一项新兴生物技术,RNAi有着广泛的应用前景。本文主要论述了RNAi的发现、RNAi
的机理、RNAi的作用特点以及RNAi
的应用前景。
1.RNAi的定义
目前对RNAi
(RNA
interference)的定义有很多种,不同的资料对其定义的侧重点也不尽相同,如果将RNAi看作一种生物学现象,可以有以下定义:①
RNAi是由dsRNA介导的由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。②
RNAi是有dsRNA参与指导的,以外源和内源mRNA为降解目标的转基因沉默现象。具有核苷酸序列特异性的自我防御机制,是一种当外源基因导入或病毒入侵后,细胞中与转基因或入侵病毒RNA同源的基因发生共同基因沉默的现象。
如果将其作为一门生物技术,则定义为:①
RNAi
是指通过反义RNA与正链RNA
形成双链RNA
特异性地抑制靶基因的现象,它通过人为地引入与内源靶基因具有相同序列的双链RNA(有义RNA
和反义RNA)
,从而诱导内源靶基因的mRNA
降解,达到阻止基因表达的目的。②
RNAi是指体外人工合成的或体内的双链RNA(dsRNA)在细胞内特异性的将与之同源的
mRNA降解成21nt~23nt
的小片段,使相应的基因沉默。③
RNAi是将与靶基因的mRNA
同源互补的双链RNA(dsRNA
)
导入细胞,能特异性地降解该mRNA
,从而产生相应的功能表型缺失,
属于转录后水平的基因沉默(post
-
transcriptional
gene
silence
,
PTGS)。
各种不同定义虽然说法不同,但所描述事实是大体相同的,简单地可以说,RNAi就是指由RNA介导的基因沉默现象。

⑽ 焊丝中TGS是什么意思

焊丝中TGS代表不锈钢焊丝,小日本的用法。

阅读全文

与生物中TGS是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:468
乙酸乙酯化学式怎么算 浏览:1141
沈阳初中的数学是什么版本的 浏览:1062
华为手机家人共享如何查看地理位置 浏览:793
一氧化碳还原氧化铝化学方程式怎么配平 浏览:618
数学c什么意思是什么意思是什么 浏览:1114
中考初中地理如何补 浏览:1063
360浏览器历史在哪里下载迅雷下载 浏览:487
数学奥数卡怎么办 浏览:1095
如何回答地理是什么 浏览:813
win7如何删除电脑文件浏览历史 浏览:853
大学物理实验干什么用的到 浏览:1201
二年级上册数学框框怎么填 浏览:1410
西安瑞禧生物科技有限公司怎么样 浏览:558
武大的分析化学怎么样 浏览:986
ige电化学发光偏高怎么办 浏览:1083
学而思初中英语和语文怎么样 浏览:1320
下列哪个水飞蓟素化学结构 浏览:1144
化学理学哪些专业好 浏览:1233
数学中的棱的意思是什么 浏览:767