导航:首页 > 生物信息 > 生活在水里的微生物有哪些特点

生活在水里的微生物有哪些特点

发布时间:2022-10-03 15:30:25

A. 海洋微生物其特征是什么

海洋微生物是指以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。海洋细菌是海洋生态系统中的重要环节。作为分解者,它促进了物质循环;在海洋沉积成岩及海底成油成气过程中,都起了重要作用。还有一小部分化能自养菌则是深海生物群落中的生产者。海洋细菌会污损水工构筑物,在特定条件下其代谢产物如氨及硫化氢也会毒化养殖环境,从而造成养殖业的经济损失。但海洋微生物的颉颃作用可以消灭陆源致病菌,它的巨大分解潜能几乎可以净化各种类型的污染,它还可能提供新抗生素以及其他生物资源,因而随着研究技术的发展,海洋微生物日益受到重视。

与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。

嗜盐性嗜盐性是海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需。此外,钾、镁、钙、磷、硫或其他微量嗜冷性元素也是某些海洋微生物生长所必需的。

大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃海洋微生物就会停止生长或死亡。那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。

嗜压性海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。对于那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制,迄今尚难于获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。

低营养性海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现象说明常规的平板法并不是一种最理想的分离海洋微生物的方法。

趋化性与附着生长海水中的营养物质虽然稀薄,但海洋环境中各种固体表面或不同性质的界面上吸附积聚着较丰富的营养物。绝大多数海洋细菌都具有运动能力。其中某些细菌还具有沿着某种化合物浓度梯度移动的能力,这一特点称为趋化性。某些专门附着于海洋植物体表而生长的细菌称为植物附生细菌。海洋微生物附着在海洋中生物和非生物同体的表面,形成薄膜,为其他生物的附着造成条件,从而形成特定的附着生物区系。

多形性在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物,发光性在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。

B. 淡水型水体中的微生物有以下哪些特点

咨询记录 · 回答于2021-10-25

C. 生活在水中的微生物有哪些

活性污泥中的微生物
活性污泥是微生物群体及它们所吸附的有机物质和无机物质的总称。微生物群体主要包括细菌、原生动物和藻类等。其中,细菌和原生动物是主要的两大类。
(一)细菌
细菌是单细胞生物,如球菌、杆菌和螺旋菌等。它们在活性污泥中种类多、数量大、体积微小,具有强的吸附和分解有机物的能力,在污水处理中起着关键作用。
在活性污泥培养的初期,细菌大量游离在污水中,但随着污泥的逐步形成,逐渐集合成较大的群体,如菌胶团、丝状菌等。

D. 微生物有哪些特点

微生物学(microbiology)生物学的分支学科之一。它是在分子、细胞或群体水平上研究各类微小生物(细菌、放线菌、真菌、病毒、立克次氏体、支原体、衣原体、螺旋体原生动物以及单细胞藻类)的形态结构、生长繁殖、生理代谢、遗传变异、生态分布和分类进化等生命活动的基本规律,并将其应用于工业发酵、医学卫生和生物工程等领域的科学。
学科影响
微生物学是高等院校生物类专业必开的一门重要基础课或专业基础课,也是现代高新生物技术的理论与技术基础。 基因工程、细胞工程、酶工程及发酵工程就是在微生物学原理与技术基础上形成和发展起来的;《微生物学》也是高 等农林院校生物类专业发展及农林业现代化的重要基石之一。随着生物技术广泛应用,微生物学对现代与未来人类的 生产活动及生活必将产生巨大影响。
2、吸收多、转化快 1、体积小、比表面积大 大小以um计,但比表面积(表面积/体积)大,(插入表),必然有一个巨大的营养吸收,代谢废物排泄和环境信息接受面。这一特点也是微生物与一切大型生物相区别的关键所在。 举例:乳酸杆菌:120,000;鸡蛋:1.5;人(200磅):0.3 2、吸收多、转化快 这一特性为高速生长繁殖和产生大量代谢物提供了充分的物质基础。 举例:3克地鼠每天消耗与体重等重的粮食;1克闪绿蜂鸟每天消耗两倍于体重的粮食;大肠杆菌每小时消耗2000倍于体重的糖;发酵乳糖的细菌在1小时内就可以分解相当于其自身重量1,000~10,000倍的乳糖,产生乳酸;1公斤酵母菌体,在一天内可发酵几千公斤的糖,生成酒精; 3、生长旺、繁殖快 极高生长繁殖速度,如E.coli20-30分钟分裂一次,若不停分裂,48小时2.2×1043菌数增加,营养消耗,代谢积累,限制生长速度。这一特性可在短时间内把大量基质转化为有用产品,缩短科研周期。也有不利一面,如疾病、粮食霉变。 举例:Escherichiacoli(大肠杆菌)在最适的生长条件下,每12.5~20分钟细胞就能分裂一次;在液体培养基中,细菌细胞的浓度一般为108~109个/ml;谷氨酸短杆菌:摇瓶种子→50吨发酵罐:52小时内细胞数目可增加32亿倍。利用微生物的这一特性就可以实现发酵工业的短周期、高效率生产。例如生产鲜酵母时,几乎12小时就可以收获一次,每年可以收获数百次。 表 若干微生物的代时及每日增殖率 微生物名称 代时 每日分裂次数 温度 每日增殖率
乳酸菌 38分 38 25 2.7×1011
大肠杆菌 18分 80 37 1.2×1024
根瘤菌 110分 13 25 8.2×103
枯草杆菌 31分 46 30 7.0×1013
光合细菌 144分 10 30 1.0×103
酿酒酵母 120分 12 30 4.1×103
小球藻 7小时 3.4 25 10.6
念珠藻* 23小时 1.04 25 2.1
硅藻 17小时 1.4 20 2.64
草履虫 10.4小时 2.3 26 4.92
*为念珠蓝菌属(Nostoc)的旧称,与细菌同属原核生物。 4、适应强、易变异 极其灵活适应性,对极端环境具有惊人的适应力,遗传物质易变异。更重要的是在于微生物的生理代谢类型多、代谢产物种类多。 举例:万米深海、85公里高空、地层下128米和427米沉积岩中都发现有微生物存在。微生物的种数,据1972年: 类型 低限 倾向种数 高限
病毒与立克次氏体 1217 1217 1217
支原体 42 42 42
细菌与放线菌 >1000 1500 1500
蓝细菌 1227 1500 1500
藻类 15051 23100 23100
真菌 37175 47300 68939
原生动物 24068 24068 30000
总数 79780 98727 127298
5、分布广、种类多 分布区域广,分布环境广。生理代谢类型多,代谢产物种类多,种数多。更重要的是在于微生物的生理代谢 青霉素
类型多、代谢产物种类多。任何有其它生物生存的环境中,都能找到微生物,而在其它生物不可能生存的极端环境中也有微生物存在。 举例:青霉素生产菌Penicilliumchrysogenum(产黄青霉)的产量1943年为每毫升发酵液中含20单位青霉素,40多年来,经过世界各国微生物遗传育种工作者的不懈努力使该菌产量变异逐渐积累,加上发酵条件的改进,目前世界上先进国家的发酵水平每毫升已超过5万单位,甚至接近10万单位。微生物的数量性状变异和育种使产量提高的幅度之大,是动植物育种工作中绝对不可能达到的。正因为如此,几乎所有微生物发酵工厂都十分重视菌种选育工作。 微生物作用: 1、在自然界物质循环中作用 2、空气与水净化,污水处理 3、工农业生产:菌体,代谢产物,代谢活动 4、对生命科学的贡献
编辑本段分类与命名
微生物的分类单位:界、门、纲、目、科、属、种 种是最基本的分类单位,每一分类单位之后可有亚门、亚纲、亚目、亚科... 以啤酒酵母为例,它在分类学上的地位是: 界(Kindom):真菌界 门(Phyllum):真菌门 纲(Class):子囊菌纲 目(Order):内孢霉目 科(Family):内孢霉科 属(Genus):酵母属 种(Species):啤酒酵母 种(species):是一个基本分类单位;是一大群表型特征高度相似、亲缘关系极其接近,与同属内其他种有明显差别的菌株的总称。 ①菌株(strain)表示任何由一个独立分离的单细胞繁殖而成的纯种群体及其一切后代(起源于共同祖先并保持祖先特性的一组纯种后代菌群)。因此,一种微生物的不同来源的纯培养物均可称为该菌种的一个菌株。菌株强调的是遗传型纯的谱系。 例如:大肠埃希氏杆菌的两个菌株:EscherichiacoliB和EscherichiacoliK12 菌株的表示法:如果说种是分类学上的基本单位,那末菌株实际上是应用的基本单位,因为同一菌种的不同菌株在产酶上种类或代谢物产量上会有很大的不同和差别! ②亚种(subspecies)或变种(variety):为种内的再分类。 当某一个种内的不同菌株存在少数明显而稳定的变异特征或遗传形状,而又不足以区分成新种时,可以将这些菌株细分成两个或更多的小的分类单元——亚种。 变种是亚种的同义词,因“变种”一词易引起词义上的混淆,从1976年后,不在使用变种一词。通常把实验室中所获得的变异型菌株,称之为亚种。 例如:E.colik12(野生型)是不需要特殊aa的,而实验室变异后,可从k12获得某aa的缺陷型,此即称为E.colik12的亚种。 ③型(form):常指亚种以下的细分。当同种或同亚种内不同菌株之间的性状差异不足以分为新的亚种时,可以细分为不同的型。 例如:按抗原特征的差异分为不同的血清型 微生物的命名:微生物的名字有俗名和学名两种。如:红色面包霉——粗糙脉孢霉;绿脓杆菌——铜绿假单胞菌。 学名—是微生物的科学名称,它是按照有关微生物分类国际委员会拟定的法则命名的。学名由拉丁词、或拉丁化的外来词组成。学名的命名有双名法和三名法两种。 ①双名法:学名=属名+种名+(首次定名人)+现定名人+定名年份 属名:拉丁文的名词或用作名词的形容词,单数,首字母大写,表示微生物的主要特征,由微生物构造,形状或由科学家命名。种名:拉丁文形容词,字首小写,为微生物次要特征, 如微生物色素、形状、来源或科学家姓名等。 例:大肠埃希氏杆菌 Escherichiacoli(Migula)CastellanietChalmers1919 金黄色葡萄球菌 当泛指某一属微生物,而不特指该属中某一种(或未定种名)时,可在属名后加sp.或ssp.(分别代表species缩写的单数和复数形式)。 例如:Saccharomycessp.表示酵母菌属中的一个种。 菌株名称:在种名后面自行加上数字、地名或符号等 例如:BacillussubtilisAS1.389AS=AcademiaSinica BacillussubtilisBF7658BF=北纺 丙酮丁醇梭菌
微生物的定义
现代定义:微生物是一切肉眼看不见或看不清的微小生物的总称。 形体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。 (但有些微生物是可以看见的,像属于真菌的蘑菇、灵芝等。)
特点
个体微小,一般<0.1mm。 构造简单,有单细胞的,简单多细胞的,非细胞的。进化地位低,大多依靠有机物维持生命。
分类
原核类: 三菌,三体。 三菌:细菌、蓝细菌、放线菌 三体:支原体、衣原体、立克次氏体 真核类: 真菌,原生动物,显微藻类。 非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒)。
五大共性:
体积小,面积大; 吸收多,转化快 微生物
; 生长旺,繁殖快; 适应强,易变异; 分布广,种类多。
编辑本段类群
种类 原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。 真核:真菌
、藻类、原生动物。 非细胞类:病毒和亚病毒。 一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类: 细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。
细菌
(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物 (2)分布:温暖,潮湿和富含有机质的地方 (3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形 基本结构:细胞膜 细胞壁 细胞质 核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 (4)繁殖: 主要以二分裂方式进行繁殖的 (5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基上大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落. 菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同.
放线菌
(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物
(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中 (3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) (4)繁殖:通过形成无性孢子的形式进行无性繁殖 无性繁殖 有性繁殖 (5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉
病毒
(1) 定义:一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞. (2)结构:[font class="Apple-style-span" style="font-family: -webkit-monospace; font-size: 13px; line-height: normal; white-space: pre-wrap; "]蛋白质衣壳以及核酸(核酸为DNA或RNA)[/font] (3)大小:一般直径在100nm左右,最大的病毒直径为200nm的牛痘病毒,最小的病毒直径为28nm的脊髓灰质炎病毒 (4)增殖:病毒的生命活动中一个显着的特点为寄生性。病毒只能寄生在某种特定的活细胞内才能生活。并利用会宿主细胞内的环境及原料快速复制增值。在非寄生状态时呈结晶状,不能进行独立的代谢活动。以 噬菌体为例: 吸附→DNA注入→复制、合成→组装→释放 噬菌体侵染细菌过程示意图

编辑本段微生物的特点
微生物的化学组成
C,H,O,N,P,S以及其他元素
微生物的营养物质
1 水和无机盐 2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质 来源 作用 3氮源:凡能为微生物提供所必需氮元素的营养物质 来源 作用:主要用于合成蛋白质,核酸以及含氮的代谢产物 4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能
根据碳源和能源分类
5生长因子:微生物生长不可缺少的微量有机物
能引起人和动物致病的微生物叫病源微生物,有八大类: 1.真菌:引起皮肤病。深部组织上感染。 2放线菌:皮肤,伤口感染。 3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。 4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。 5立克次氏体:斑疹伤寒等。 6衣原体:沙眼,泌尿生殖道感染。 7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。 8支原体:肺炎,尿路感染。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。
微生物的作用

编辑本段贡献
现代生物学的若干基础性的重大发现与理论,是在研究微生物的过程中或以微生物为实验材料与工具取得的。这些理论包括:证明DNA(脱氧核糖核酸)是遗传信息的载体(三大经典实验:肺炎球菌的转化实验、噬菌体实验、植物病毒的重组实验)。DNA的半保留复制方式(双螺旋的每一条子链分别、都是复制模板)。遗传密码子的解读(64个密码子各对应20种氨基酸及终止信号的哪一种)。基因的转录调节(operon, promoter, operator, repressor, activator的概念与调节方式)。信使RNA的翻译调节(terminator)等等……。 现在,很多常用、通用的生物学研究技术依赖于微生物,比如:分子克隆重组蛋白在细菌或酵母中的表达。很多医学技术也依赖于微生物,比如:以病毒为载体的基因治疗。
编辑本段微生物在整个生命世界中的地位
当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到20世纪70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。 古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。 生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。 从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。
综述
微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病 微生物的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。 微生物非常小,必须通过显微镜放大约1000倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想象一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50亿个细菌。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。 一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物因为微生物很小,构造又简单,所以人们充分认识它,并发展成为一门学科,与其他学科比起来,还是很晚的。尽管如此,人们已经在广泛的应用微生物了。我国劳动人民很早就认识到微生物的存在和作用,也是最早应用微生物的少数国家之一。据考古学推测,我国在8000年前已经出现了曲蘖酿酒了,4000多年前我国酿酒已十分普遍,而且当时埃及人也已学会烤制面包和酿制果酒。 2500年前中国人民发明酿酱、醋,知道用曲治疗消化道疾病。公元6世纪(北魏时期),我国贾思勰的巨着《齐民要术》详细地记载了制曲、酿酒、制酱和酿醋等工艺。在农业上,虽然还不知道根瘤菌的固氮作用,但已经在利用豆科植物轮作提高土壤肥力。这些事实说明,尽管人们还不知道微生物的存在,但是已经在同微生物打交道了,在应用有益微生物的同时,还对有害微生物进行预防和治疗。为防止食物变质,采用盐渍、糖渍、干燥、酸化等方法。在我国隆庆年间就开始用人痘预防天花。人痘预防天花是我国对世界医学上的一大贡献,这种方法先后传到俄国、日本、朝鲜、土耳其及英国,1798年英国医生琴纳(Jenner)提出用牛痘预防天花。微生物学作为一门学科,是从有显微镜开始的,微生物学发展经历了三个时期:形态学时期、生理学时期和现代微生物学的发展。 形态学时期 微生物微生物的形态观察是从安东·列文虎克(Antony Van Leeuwenhock 1632-1732)发明的显微镜开始的,它是真正看见并描述微生物的第一人,他的显微镜在当时被认为是最精巧、最优良的单式显微镜,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,而且还把观察结果报告给英国皇家学会,其中有详细的描述,并配有准确的插图。1695年,安东·列文虎克把自己积累的大量结果汇集在《安东·列文虎克所发现的自然界秘密》一书里。他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。这在微生物学的发展史上具有划时代的意义。
生理学时期
例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。 在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 微生物以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组,研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。 为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程。
编辑本段世界地位
当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上!!
有利有害!!

E. 水中的微生物有哪些,有哪些危害

1、在饮用水中存在诸如病毒和病原原生动物(隐孢子虫、贾第虫等)之类微生物,即使含量很少,只要有单个病原体进入人体,就会感染患病,这要比饮用水中存在微量有机污染物对人体的危害更大
2、随着环境和生活方式变化,人与微生物的关系也在变化。结果在通常情况下,因环境条件变化和人的抵抗力下降而使原来无病原性微生物所引起的感染症增加;即无病原性微生物变为病原体
3、来自人类粪便的病原微生物以及人、畜共患的感染症比以前有所增多
4、根据水源和饮用水中存在的病原微生物数量、特性及其危害调查研究,发现贾第虫、隐孢子虫、弯曲杆菌属及各种病毒引起水系传染病的可能性最大
5、世界上因饮用污染水而引起的腹泻病,估计每年使上亿人发病每年约200万儿童死亡
在水中传染病原微生物中,通过饮用水对人类造成重大危害的有隐孢子虫、贾第虫等病原原生动物,甲肝、戊肝、脊髓灰质炎等病毒,病原大肠杆菌0157:H7.这些病原微生物的特性是个体小和抗性大,常规饮用水处理技术难以有效地去除它们,因为它们对氯化消毒都有很大的抗性而难以被去除因此,饮用水净化技术的重点最好是以去除有机污染物和去除病原微生物(尤其是隐孢子虫等)两者并重

F. 微生物的特点有哪些

1、嗜盐性

海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。

2、嗜冷性

大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。那些能在 0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。

嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。

3、嗜压性

嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。

那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。



4、低营养性

海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。

这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法

5、多形性

在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物。

6、发光性

在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。

G. 海洋微生物有哪些特点

1.海洋微生物趋化性:虽然海水中的营养物质较稀少,但海洋环境中各种固体表面或不同性质的界面上仍有一些丰富的营养物吸附积聚在上面。绝大多数海洋细菌都有一定的运动能力,其中某些细菌还能够沿着某种化合物浓度梯度进行移动,这种特点就称为趋化性。某些靠依附在海洋植物体表生长的细菌称为植物附生细菌。海洋微生物附着在海洋中生物和非生物固体的表面,形成薄膜,为其他生物的附着提供条件,进一步形成稳定的附着生物区系。

2.海洋微生物的多形性:通过显微镜观察细菌,有时候会发现,在同一株细菌纯培养中会出现多种形态,如球形、椭圆形、杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中的表现尤为普遍。看来,微生物是为了适应复杂的海洋环境,而逐渐形成了这种特征。

3.>海洋微生物的发光性:在海洋细菌中,具有发光特征的种类并不多。海洋发光细菌发光强度的大小,除了种的自身特性外,在很大程度上取决于各种外界条件的综合作用,如海洋环境要素、水中污染状况等。细菌发光现象对理化因子反应敏感,因此利用发光细菌来检验水域污染状况,通常会收到不错的效果。

4.海洋微生物的嗜盐性:这是所有海洋微生物几乎都具备的特点。真正的海洋微生物要想生长,就离不开海水。海水中含有丰富的无机盐类和微量元素。钠为海洋微生物生长与代谢所必需,此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物维持生命必不可少的。

H. 水中微生物生活习性和形态特点

笑声勃起,

I. 水中常见的微生物有哪些

常见的水生微生物:真菌、细菌、原生动物、噬菌体。水生微生物在生态系统中的地位非常重要,它们主要起到分解的作用。若没有水生微生物,那么动植物残体、排泄物等无法循环,物质将被锁在有机质中不能被生产者利用,会导致整个生态系统崩溃。

细菌、真菌,如:放线菌、腐生菌、原生动物。它们以不同的碳水化合物,包括糖、淀粉、有机酸、纤维素、半纤维素等作为能源。

细菌是重要的分解者,他们分布很广而且可以分解有机物,一公克的土壤通常包含4千万个细菌细胞,而且地球上的细菌形成一种生物量,这种生物量是超过全部现存的植物和动物,细菌在滋养物的循环是重要的,而许多滋养物的循环是依靠生物。

不同于细菌,真菌是单细胞生物,大多腐生营养真菌会增加分歧网状系统的菌丝。细菌的增生是被限制而且吃暴露在表面的有机物,真菌可以使用他们的菌丝去穿透较大的有机物质。

阅读全文

与生活在水里的微生物有哪些特点相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:448
乙酸乙酯化学式怎么算 浏览:1119
沈阳初中的数学是什么版本的 浏览:1030
华为手机家人共享如何查看地理位置 浏览:757
一氧化碳还原氧化铝化学方程式怎么配平 浏览:595
数学c什么意思是什么意思是什么 浏览:1084
中考初中地理如何补 浏览:1033
360浏览器历史在哪里下载迅雷下载 浏览:462
数学奥数卡怎么办 浏览:1061
如何回答地理是什么 浏览:787
win7如何删除电脑文件浏览历史 浏览:828
大学物理实验干什么用的到 浏览:1171
二年级上册数学框框怎么填 浏览:1381
西安瑞禧生物科技有限公司怎么样 浏览:529
武大的分析化学怎么样 浏览:963
ige电化学发光偏高怎么办 浏览:1060
学而思初中英语和语文怎么样 浏览:1282
下列哪个水飞蓟素化学结构 浏览:1120
化学理学哪些专业好 浏览:1206
数学中的棱的意思是什么 浏览:740