导航:首页 > 生物信息 > 生物怎么用核酸

生物怎么用核酸

发布时间:2022-07-01 02:53:39

1. 高一必修一生物 核酸 讲解

第3节:遗传信息的携带者——核酸
⒈核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用
⒉核酸的分类:脱氧核糖核酸(DNA)和核糖核酸(RNA)
⒊核酸的分布: ①脱氧核糖核酸(DNA)主要分布在细胞核中,线粒体和叶绿体中含有少量的DNA
②核糖核酸(RNA)主要分布在细胞质中; ③DNA+甲基绿→绿色;RNA+吡罗红→红色(甲基绿-吡罗红混合染色)
⒋核酸的组成元素:C、H、O、N、P⒌核酸基本组成单位:核苷酸(包括一分子含氮碱基、一分子五碳糖、一分子磷酸)
⒍核苷酸的分类: ①脱氧核苷酸:磷酸+脱氧核糖(C5H10O4)+含氮碱基(A/T/G/C),故脱氧核苷酸4种
②核糖核苷酸:磷酸+核糖(C5H10O5)+含氮碱基(A/U/G/C),故核糖核苷酸4种
⒎①在病毒体内含核酸1种;核苷酸4种;碱基4种②在细胞内含核酸2种;核苷酸8种;碱基5种
⒏脱氧核苷酸通过脱水缩合形成脱氧核苷酸长链,DNA分子一般由2条脱氧核苷酸长链组成
⒐核糖核苷酸通过脱水缩合形成核糖核苷酸长链,RNA分子一般由1条核糖核苷酸长链组成

2. 核酸生物学功能

核苷酸 Nucleotide

一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。

核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、Ⅱ及辅酶A等的组成成分。

在生物体内,核苷酸可由一些简单的化合物合成。这些合成原料有天门冬氨酸、甘氨酸、谷氨酰胺、一碳单位及 CO2等。嘌呤核苷酸在体内分解代谢可产生尿酸,嘧啶核苷酸分解生成CO2、β-丙氨酸及β-氨基异丁酸等。嘌呤核苷酸及嘧啶核苷酸的代谢紊乱可引起临床症状(见嘌呤代谢紊乱、嘧啶代谢紊乱)。

核苷酸类化合物也有作为药物用于临床治疗者,例如肿瘤化学治疗中常用的5-氟尿嘧啶及6-巯基嘌呤等。

有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP)。5'-核苷酸的磷酸基还可进一步磷酸化生成二磷酸核苷(NDP)及三磷酸核苷(NTP),其中磷酸之间是以高能键相连。脱氧核苷酸的情况也是如此。

体内还有一类环化核苷酸,即单核苷酸中磷酸部分与核糖中第三位和第五位碳原子同时脱水缩合形成一个环状二酯、即3',5'-环化核苷酸,重要的有3',5'-环腺苷酸(cAMP)和3',5'-环鸟苷酸(cGMP)。

生物学功能 核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面:

① 核苷酸是合成生物大分子核糖核酸 (RNA)及脱氧核糖核酸(DNA)的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP。合成前身物则是相应的三磷酸核苷 ATP、GTP、CTP和UTP。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,合成前身物则是dATP、dGTP、dCTP和dUTP。

② 三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。 ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。

③ ATP还可将高能磷酸键转移给UDP、CDP及GTP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。

④ 腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD+)、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP+)、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。

⑤ 环核苷酸对于许多基本的生物学过程有一定的调节作用(见第二信使)。

代谢 可从合成代谢、分解代谢及代谢调节三个方面讨论。

① 合成代谢。嘌呤核苷酸主要由一些简单的化合物合成而来,这些前身物有天门冬氨酸、甘氨酸、谷氨酰胺、CO2及一碳单位(甲酰基及次甲基,由四氢叶酸携带)等。它们通过11步酶促反应先合成次黄嘌呤核苷酸(又称肌苷酸)。随后,肌苷酸又在不同部位氨基化而转变生成腺苷酸及鸟苷酸。合成途径的第一步是5-磷酸核糖在酶催化下,活化生成1-焦磷酸-5-磷酸核糖(PRPP),这是一个重要的反应。嘌呤核苷酸的从头合成主要是在肝脏中进行,其次是在小肠粘膜及胸腺中进行。

嘌呤核苷酸降解可产生嘌呤碱,嘌呤碱最终分解为尿酸,其中部分分解产物可被重新利用再合成嘌呤核苷酸,这称为回收合成代谢途径,可在骨髓及脾脏等组织中进行。嘌呤核苷酸降解产生的腺嘌呤、鸟嘌呤及次黄嘌呤在磷酸核糖转移酶的催化下,接受3'-焦磷酸-5-磷酸核糖(PRPP)分子中的磷酸核糖,生成相应的嘌呤核苷酸。此合成途径也具有一定意义。

嘧啶核苷酸的从头合成主要也在肝脏中进行。合成原料为氨基甲酰磷酸及天门冬氨酸等。氨基甲酰磷酸及天门冬氨酸经过数步酶促反应生成尿苷酸,尿苷酸转变为三磷酸尿苷后,从谷氨酰胺接受氨基生成三磷酸胞苷。

上述体内合成的嘌呤及嘧啶核苷酸均系一磷酸核苷。它们均可在磷酸激酶的催化下,接受 ATP提供的磷酸基,进一步转变为二磷酸核苷及三磷酸核苷

体内还有一类脱氧核糖核苷酸。它们是dAMP、dGMP、dCMP及dTMP。它们组成中的脱氧核糖并非先生成而后组合到核苷酸分子中去,而是通过业已合成的核糖核苷酸的还原作用而生成的。此还原作用发生于二磷酸核苷分子水平上,dADP、dGDP、dCDP及dUDP均可由此而来,但dTMP则不同,它是由dUMP经甲基化作用而生成的。

② 分解代谢。嘌呤核苷酸在体内进行分解代谢,经脱氨基作用生成次黄嘌呤及黄嘌呤,再在黄嘌呤氧代酶催化下,经过氧化作用,最终生成尿酸。尿酸可随尿排出体外,正常人每日尿酸排出量为0.6g。嘧啶核苷酸在体内的分解产物为CO2,β-丙氨酸及β-氨基异丁酸等。

③ 代谢调节。核苷酸在体内的合成受到反馈性的调节作用。嘌呤核苷酸合成的终产物是AMP及GMP,它们可以反馈性地抑制由 IMP转变为AMP及GMP的反应。它们可与 IMP一齐反馈性地抑制合成途径的起始反应PRPP的生成。嘧啶核苷酸合成的产物 CTP也可反馈性地抑制嘧啶合成的起始反应。

与医学的联系 可从代谢异常所致疾病及作为药物两方面讨论。

① 核苷酸代谢的异常。GMP及IMP的回收合成需次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)参与。此酶遗传性缺乏则2~3岁时就可出现智力发育障碍、共济失调,敌对性及侵占性及自毁容貌的表现(莱施-尼汉二氏综合征)。患儿嘌呤核苷酸的从头合成仍可正常进行,但回收合成的障碍就可造成严重后果。

嘌呤核苷酸分解代谢的终产物为尿酸。正常人血中尿酸含量约为2~6mg%,血中尿酸水平的升高(高尿酸血症)常见于痛风。血中尿酸含量超过8mg%时,尿酸就以钠盐形式沉积于关节、软组织、软骨及肾脏等处。原发性痛风症是一种先天代谢缺陷性疾病。患者体内的次黄嘌呤-鸟嘌呤磷酸核糖转移酶部分缺乏,致使IMP及GMP 的回收合成减少,结果造成嘌呤核苷酸的从头合成加快。此外,患者体内的磷酸核糖焦磷酸激酶活性异常增高,以致大量地生成PRPP,促使从头合成加快,这些都造成尿酸的大量产生。原发性痛风症可用别嘌呤醇治疗。别嘌呤醇的结构与次黄嘌呤相似,是黄嘌呤氧化酶的抑制剂,可抑制次黄嘌呤及黄嘌呤转变为尿酸的反应,降低血中尿酸水平。继发性痛风,可见于各种肾脏疾病、血液病及淋巴瘤等。患者细胞中核酸大量分解,因而尿酸生成增多。

cAMP对细胞的一些生理活动有广泛的影响。cAMP的合成不足或作用失调与有些疾病过程有关。例如,支气管喘息及银屑病组织中cAMP量较低,又如糖尿病人各种代谢的异常与肝及脂肪组织中cAMP的生成过多也是有联系的。

嘧啶合成障碍有乳清酸尿症,为乳清酸磷酸核糖转移酶及乳清酸核苷酸脱羧酶缺乏所致。

② 核苷酸类似物的临床应用。核苷酸类似物6-巯基嘌呤(6MP)及5-氟尿嘧啶(5FU)用于肿瘤的化学治疗。6-巯基嘌呤的结构与次黄嘌呤相似,其一磷酸核苷对于AMP及GMP合成有关的几个酶有抑制作用,从而选择性地阻止肿瘤的生长。5-氟尿嘧啶的结构与胸腺嘧啶相似,它在体内可转变为一磷酸脱氧核糖氟尿嘧啶核苷(5Fd-UMP)及三磷酸氟尿嘧啶(FUMP)。它们对于胸苷酸合成中的甲基化作用有较强的抑制作用,从而造成癌细胞的死亡。

与核苷酸有关的名词
核苷酸 核苷的磷酸酯,磷酸基与糖上的羟基连接。因为核糖有 3个羟基,所以核糖核苷酸如腺嘌呤核苷酸(简称腺苷酸)。脱氧核糖有两个羟基,因而脱氧核糖核苷酸如腺嘌呤脱氧核糖核苷酸(简称脱氧腺苷酸)只有两种。
核苷多磷酸 含两个以上磷酸基的核苷酸。只带一个磷酸基的核苷酸,叫核苷一磷酸,带两个磷酸基的核苷酸叫核苷二磷酸,依此类推。如腺嘌呤核苷酸有腺苷一磷酸(即腺苷酸,AMP)、腺苷二磷酸(ADP)、腺苷三磷酸(ATP)和脱氧腺苷一磷酸(即脱氧腺苷酸,dAMP)、脱氧腺苷二磷酸(dADP)、脱氧腺苷三磷酸(dATP)。天然的核苷多磷酸中,磷酸基多是与戊糖的5′-羟基相连。4 种核苷三磷酸(ATP、GTP、CTP和UTP)、4 种脱氧核苷三磷酸(dATP、dGTPdCTP和dTTP)分别是RNA和DNA生物合成的原料。
寡核苷酸与多核苷酸 2 ~20个核苷酸连接而成的化合物叫寡核苷酸。20个以上的核苷酸组成的化合物叫多核苷酸。核酸是一种多核苷酸。

重要的核苷酸衍生物
腺苷酸衍生物 ADP和ATP是体内参与氧化磷酸化的高能化合物,ATP也是细胞内最丰富的游离核苷酸(如哺乳动物细胞中ATP浓度接近1毫克分子),水解1克分子ATP约释放7000卡能量。
腺苷-3′,5′-磷酸即环腺苷酸,主要存在于动物细胞中,生物体内的激素通过引起细胞内cAMP的含量发生变化,从而调节糖原、脂肪代谢、蛋白质和核酸的生物合成,所以cAMP被称为第二信使。
2′,5′-寡聚腺苷酸,通常由3个腺苷酸通过2′,5-磷酸二酯键联接而成,即pppA(2)p(5)A(2)P(5)A,是干扰素发挥作用的一个媒介,具有抗病毒、抑制DNA合成和细胞生长、调节免疫反应等生物功能。
几个重要的辅酶都是腺苷酸衍生物。ATP 就是其中最重要的一个。此外,NA、NAD和FAD,可通过氢原子的得失参与许多氧化还原反应。辅酶 A行使活化脂肪酸功能,与脂肪酸、萜类和类固醇生物合成有关。
腺苷-3′-磷酸-5′-磷酰硫酸是硫酸根的活化形式,蛋白聚糖的糖组分中硫酸根的来源。甲硫氨酸被腺苷活化得到S-腺苷甲硫氨酸,它在生物体内广泛用作甲基供体。
鸟苷酸衍生物 在某些需能反应中,如蛋白质生物合成的起始和延伸,不能使用ADP和ATP,而要GDP和GTP参与反应。鸟苷-3′,5′-磷酸也是一个细胞信号分子,在某些情况下,cGMP与cAMP是一对相互制约的化合物,两者一起调节细胞内许多重要反应。鸟苷-3′-二磷酸-5′-二磷酸 (ppGpp)和鸟苷-3′-二磷酸-5′-三磷酸(pppGpp)则与基因表达的调控有关。
胞苷酸衍生物 CDP和CTP也是一类高能化合物。与磷脂类代谢有关的胞苷酸衍生物有CDP-胆碱、CDP-乙醇胺、CDP-二甘油酯等
尿苷酸衍生物 在糖代谢中起着重要作用,UDP是单糖的活化载体,参与糖与双糖多糖的生物合成,如UDP-半乳糖是乳糖的前体,UDP-葡萄糖是糖原的前体,UDP-N-乙酰葡糖胺与糖蛋白生物合成有关。UDP和 UTP也是一类高能磷酸化合物。

3. 简述核酸在生物体内所起的作用有哪些

核酸也称多聚核苷酸,是由许多个核苷酸聚合而成的生物大分子,核苷酸是由含氮的碱基、核糖或脱氧核糖、磷酸三种分子连接而成。碱基与糖通过糖苷键连接成核苷,核苷与磷酸以酯键连接成核苷酸。核苷酸是生物体内一类重要含氮化合物,是各种核酸的...
核酸和磷脂的元素组成均是C、H、O、N、P,A正确;B、噬菌体的遗传物质是DNA,DNA分子是由脱氧核苷酸组成,B错误;C、发菜为原核生物,DNA位于拟核,C正确;D、mRNA中连续的三个碱基为一个密码子,一个mRNA中会有多个密码子,但一个tRNA仅有一个...
核酸也称多聚核苷酸,是由许多个核苷酸聚合而成的生物大分子,核苷酸是由含氮的碱基、核糖或脱氧核糖、磷酸三种分子连接而成。碱基与糖通过糖苷键连接成核苷,核苷与磷酸以酯键连接成核苷酸。核苷酸是生物体内一类重要含氮化合物,是各种核酸的...
碱基排列顺序多样性
朊病毒引起的“疯牛脖,那可是臭名昭着,人人皆知。朊病毒虽然叫做病毒,但是它却与病毒是两种完全不同的“生物”,实际上朊病毒是一种特殊的蛋白质,没有细胞结构,没有DNA也没有RNA,甚至比病毒还简单,简单到不知道可不可以将它列入“生物”的行列。
DNA,RNA
A、脂肪不含有P元素,合成脂肪时不需要磷,A错误;B、根瘤菌固氮酶中含有钼、铁,说明某些金属元素可以成为一些复杂蛋白质的构成元素,B正确;C、由于0.9%的生理盐水与人体细胞的渗透压相等,浓度为0.65%的生理盐水是蛙细胞的等渗溶液,因此为了...
这句话不对。除朊病毒外的所有病毒以及一切生物体内都有核酸存在。最本质的生命物质是核酸,蛋白质和核酸是一切生命活动的物质基矗核酸不但是一切生物细胞的基本成分,还对生物体的生长、发育、繁殖、遗传及变异等重大生命现象起主宰作用。它在...
1.婴儿、迅速成长期的孩子、老年体弱多并全身感染、外伤手术者、肝功能不全以及白细胞、T细胞、淋巴细胞降低人群等,可以额外补充核酸类物质。世界卫生组织规定,每天膳食中核酸的量不大于2克,扣除食物中的核酸摄入量,每天补充小于1.5克核酸...
核酸好比上司 上司指导mRNA TRNA 合成蛋白质 核糖体 内质网 高尔基体就相当于合成蛋合质的生产车间^o^

4. 高中生物问题:关于病毒的核酸

有感染力
病毒侵染宿主细胞时,首先是吸附在宿主细胞表面,然后将核酸注入到细胞内部,衣壳则留在外面。核酸进入宿主细胞以后,就利用宿主细胞内的物质,复制出子代病毒的核酸,并合成子代病毒衣壳的蛋白质。这些蛋白质和核酸进一步装配成子一代病毒。装配完成的病毒,在细胞裂解以后,一齐被释放出来。简单来说:吸附---注入核酸---合成核酸和蛋白质---装配---释放

5. 核酸是什么怎样组成的有什么用途

由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。

核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物

核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。
单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。
碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶 >(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。
嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。
此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。
戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。
戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。
核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。
核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3’和C-5’所连的羟基上形成的,故构成核酸的核苷酸可视为3’-核苷酸或5’-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。
当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。

核苷酸是怎么连接的?
3’,5’-磷酸二酯键:核酸是由众多核苷酸聚合而成的多聚核苷酸(polynucleotide),相邻二个核苷酸之间的连接键即:3’,5’-磷酸二酯键。这种连接可理解为核苷酸糖基上的3’位羟基与相邻5’核苷酸的磷酸残基之间,以及核苷酸糖基上的5’位羟基与相邻3’核苷酸的磷酸残基之间形成的两个酯键。多个核苷酸残基以这种方式连接而成的链式分子就是核酸。无论是DNA还是RNA,其基本结构都是如此,故又称DNA链或RNA链。DNA链的结构如下示意图。
寡核苷酸(oligonucleotide):这是与核酸有关的文献中经常出现的一个术语,一般是指二至十个核苷酸残基以磷酸二酯键连接而成的线性多核苷酸片段。但在使用这一术语时,对核苷酸残基的数目并无严格规定,在不少文献中,把含有三十甚至更多个核苷酸残基的多核苷酸分子也称作寡核苷酸。寡核苷酸目前已可由仪器自动合成,它可作为DNA合成的引物(primer)、基因探针(probe)等,在现代分子生物学研究中具有广泛的用途。
核酸链的简写式:核酸分子的简写式是为了更简单明了的叙述高度复杂的核酸分子而使用的一些简单表示式。它所要表示的主要内容是核酸链中的核苷酸(或碱基)。下面介绍二种常用的简写式。
字符式:书写一条多核苷酸链时,用英文大写字母缩写符号代表碱基(DNA和RNA中所含主要碱基及缩写符号见表1-1),用小写英文字母P代表磷酸残基。核酸分子中的糖基、糖苷键和酯键等均省略不写,将碱基和磷酸相间排列即可。因省略了糖基,故不再注解“脱氧”与否,凡简写式中出现T就视为DNA链,出现U则视为RNA链。以5’和3’表示链的末端及方向,分别置于简写式的左右二端。下面是分别代表DNA链和RNA链片段的二个简写式:
5’pApCpTpTpGpApApCpG3’DNA
5’pApCpUpUpGpApApCpG3’RNA

此式可进一步简化为:
5’pACTTGAACG3’
5’pACUUGAACG3’
上述简写式的5’-末端均含有一个磷酸残基(与糖基的C-5’位上的羟基相连),3’-末端含有一个自由羟基(与糖基的C-3’位相连),若5’端不写P,则表示5’-末端为自由羟基。双链DNA分子的简写式多采用省略了磷酸残基的写法,在上述简式的基础上再增加一条互补链(complentarystrand)即可,链间的配对碱基用短纵线相连或省略,错配(mismatch)碱基对错行书写在互补链的上下两边,如下所示:
5’GGAATCTCAT3’
3’CCTTAGAGTA5’
5’GGAATC错配)

线条式:在字符书写基础上,以垂线(位于碱基之下)和斜线(位于垂线与P之间)分别表示糖基和磷酸酯键。如下图所示
上式中,斜线与垂线部的交点为糖基的C-3’位,斜线与垂线下端的交点为糖基的C-5’位。这一书写式也可用于表示短链片段。不难看出,简写式表示的中心含义就是核酸分子的一级结构,即核酸分子中的核苷酸(或碱基)排列顺序。

人造核酸可用于治疗白血病
日本工业技术院产业技术融合领域研究所在8月3日出版的《自然》杂志上发表论文称,已开发出了治疗白血病的人造核酸。这种人造核酸就像一把剪刀,可发现引起白血病的遗传基因并将其剪除。科研小组的成员、东京大学研究生院教授多比良和诚根据动物实验结果认为,这种人造核酸将来有望成为治疗白血病的主要药物。

这次研究的对象是慢性骨髓性白血病(MCL),患者的异常遗传因子是由两个正常的遗传因子连接而成的,新开发的人造核酸可以发现这种变异遗传基因并将其切断。科学家过去也发现过能找到特定的遗传因子序列并将其切断的分子,但在切断特定遗传因子序列的同时往往对正常细胞造成伤害。而新开发出的核酸只在发现异常遗传因子时才被激活,平时则潜伏不动。

科研小组用人体白血病细胞进行了动物实验。他们将可与人造核酸反应的细胞和不可与人造核酸反应的细胞分别注射到8只实验鼠的体内。移植后第13周时,不与人造核酸反应的细胞全部死亡,而与人造核酸反应的细胞全部存活,证明人造核酸在生物体内十分有效。

科研小组说,此人造核酸的临床应用尚有诸多问题要解决,将来很可能是把患者的骨髓细胞抽出来,经人造核酸处理后,再把正常细胞的骨髓输回患者体内。

6. 高中生物核酸的功能是什么

高中生物核酸的功能是:携带遗传信息,控制遗传、变异和蛋白质的合成。

DNA是储存、复制和传递遗传信息的主要物质基础。RNA在蛋白质合成过程中起着重要作用,其中转运核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。

核酸

核酸是脱氧核糖核酸(DNA)和核糖核酸(RNA)的总称,是由许多核苷酸单体聚合成的生物大分子化合物,为生命的最基本物质之一。核酸是一类生物聚合物,是所有已知生命形式必不可少的组成物质,是所有生物分子中最重要的物质,广泛存在于所有动植物细胞、微生物体内。

核酸由核苷酸组成,而核苷酸单体由五碳糖、磷酸基和含氮碱基组成。如果五碳糖是核糖,则形成的聚合物是RNA;如果五碳糖是脱氧核糖,则形成的聚合物是DNA。核苷酸是组成核酸的基本单位,即组成核酸分子的单体。

以上内容参考:网络——核酸


7. 核酸的作用和功能高中生物,求解答谢谢!

核酸分为核糖核酸(RNA)脱氧核糖核酸(DNA),核酸都由一分子磷酸一分子五碳糖以及碱基组成,区别在于DNA是由脱氧核糖,RNA是核糖。
DNA是主要的遗传物质,这是针对所有生物而言,每一个个体而言只有一种遗传物质,以人为例,人体有DNA和RNA然而人的遗传物质是DNA,此时的RNA不叫遗传物质。
DNA在染色体上成双链,分为好多片段,有遗传效应的片段叫基因,人体所有信息都在DNA上。反正功能很多,把书上的详细看一下也就差不多了,考试也就能有不错的分数了。

8. 核酸的作用 在生物体的什么中具有重要的作用

核酸也称多聚核苷酸,是由许多个核苷酸聚合而成的生物大分子,核苷酸是由含氮的碱基、核糖或脱氧核糖、磷酸三种分子连接而成。碱基与糖通过糖苷键连接成核苷,核苷与磷酸以酯键连接成核苷酸。核苷酸是生物体内一类重要含氮化合物,是各种核酸的基本组成单位。根据核酸所含戊糖的不同,可分为核糖核酸(RNA)和脱氧核糖核酸(DNA)二种。
核酸不但是一切生物细胞的基本成分,还对生物体的生长、发育、繁殖、遗传及变异等重大生命现象起主宰作用。它在生物科学的地位,可用“没有核酸就没有生命”这句话来概括。
饮食核酸的营养保健作用如下:
1.饮食核酸与免疫 ‘

从核酸对机体各系统的影响来看,免疫系统是最敏感也是最直接受影响的系统。1985年科学家就证实无核酸饮食或低核酸饮食配方饲喂的实验动物,其细胞免疫功能低下,条件致病菌就可使其感染。无核酸饮食致使T淋巴细胞发育障碍、功能低下,而没有细胞免疫反应的发生,同时影响T细胞依赖的体液免疫的产生;补充核酸营养后可恢复免疫系统的发育和免疫功能。实验表明,核酸是维持机体正常免疫功能和免疫系统生长代谢的必需营养物质。

2.饮食核酸与衰老和内分泌

衰老是机体各组织器官的退行性变化,关于衰老发生机制的学说很多,如自由基学说、免疫学说、内分泌学说、遗传学说等。脂质过氧化随年龄增大而增高,并伴有酶与非酶系统防御功能下降,导致体内自由基浓度升高。代谢性、退行性疾病的发生和发展与体内过氧化脂质含量高度正相关。饮食核酸能增加血浆单不饱和脂肪酸和co-3、¨6系列多不饱和脂肪酸的含量,多不饱和脂肪酸的增加可提高机体对抗自由基的能力。饮食核酸作为使遗传物质活泼代谢的原料,具有极强的抗生物氧化、消除体内自由基和全面增强免疫功能及性激素分泌的作用,因此在延缓衰老方面优势显着。

3.饮食核酸与增殖细胞

饮食中补加核酸有助于肝脏再生和受损伤的小肠恢复功能。有无核酸饮食对比研究证明,一段时期内膳食中如缺乏核酸,将对大鼠肝脏的超微结构及功能造成不良影响,提示饮食核酸是维持肝脏处于正常生理状态的必需营养物质。血液中的红细胞、白细胞、血小板和血浆蛋白等也都是代谢较快的增殖细胞系,加之它们中的大多数均无从头合成核酸的能力,因此它们的代谢和功能也都需要充足的核酸营养。再生障碍性贫血和抗癌药物、放疗、化疗等引起的贫血,即缺铁性贫血之外的贫血均需补充核酸营养,以改善骨髓造血功能和血液成分的代谢活力。

4.饮食核酸与癌症人体每日约有数百万个癌状细胞出现,它们几乎全部被
机体的免疫监视系统和核酸、维生素等食物成分,在形成大的癌细胞克隆前排除掉。因此在日常生活中尽量避免致癌因子的作用,增加核酸等防癌因素的作用非常必要。

5.饮食核酸与痴呆等神经障碍

食物核酸提取物对痴呆症状的改善非常令人鼓舞。在大鼠实验中,如给大鼠脑注射RNA合成阻断剂,则所掌握的学习能力和记忆能力在5小时后丧失,但如在注射RNA合成阻断剂的同时注射拮抗阻断剂的物质,这种记忆丧失就不发生。美国哈佛大学的研究也表明,老年痴呆患者脑内神经纤维变化多的部位,RNA和蛋白质合成显着减少,因此发生记忆障碍。
6.饮食核酸与循环系统

核酸营养对循环系统的作用是抑制过氧化脂质的形成,抑制胆固醇的生成,扩张血管,改善血流,纠正心肌代偿不良,促进血管壁再生,抑制血小板凝集i因此核酸被认为对脑血栓、心肌梗死、高血压和动脉粥样硬化症有较好的营养保健作用。

7、饮食核酸与糖尿病

非胰岛素依赖性糖尿病与生活方式和运动不足关系密切,目前尚无特效疗法,饮食疗法常常被应用于这类患者。如果在普通的饮食疗法的基础上,再加上核酸饮食,将收到更好的效果。其原因:一是糖尿病患者血清中过氧化脂质增多,核酸及其代谢产物对其具有较强的清除作用;二是由于核酸的促细胞(包括促胰脏的胰岛素分泌细胞)代谢功能。除此之外,核酸的代谢产物腺苷还有抑制糖的分解作用,使糖在小肠内的吸收减缓。
除上述作用外,饮食核酸还有以下作用:减肥,提高机体对环境变化的耐受力,显着的抗疲劳、增强机体对冷热的抵抗力、促进摄人氧气的利用,促进小鼠生殖系统的发育等。
对于婴儿、迅速成长期的孩子、老年体弱多病、全身感染、外伤手术者、肝功能不全以及白细胞、T细胞、淋巴细胞降低人群等,可以额外补充核酸类物质。世界卫生组织规定,每天膳食中核酸的量不大于2克,扣除食物中的核酸摄入量,每天补充小于1.5克核酸是合适的。

食物中,鱼类等海产品富含核酸,此外动物肝脏、脑、心、瘦肉,豆类及豆制品,笋,波菜,蘑菇,木耳,花粉,酵母,香蕉,葡萄,胡萝卜,番茄,苹果,桔子等,含核酸也较丰富。核酸产品有核酸调味品、食品添加剂及保健食品。

9. 生物的 核酸 大概解释一下

核酸是生物的遗传物质,由核苷酸组成,核苷酸又由一份含氮碱基(AGCTU四种),一份磷酸,一份五碳糖(两种),由上就可以理解有两种核酸,含脱氧核糖的核酸叫脱氧核糖核酸(DNA)含核糖的叫核糖核酸(RNA)除部分病毒遗传物质是RNA,其它都是DNA,望采纳。

10. 核酸的作用和功能高中生物,求解答

1.携带遗传信息
2.控制遗传、变异和蛋白质的合成

阅读全文

与生物怎么用核酸相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:845
乙酸乙酯化学式怎么算 浏览:1516
沈阳初中的数学是什么版本的 浏览:1473
华为手机家人共享如何查看地理位置 浏览:1167
一氧化碳还原氧化铝化学方程式怎么配平 浏览:1010
数学c什么意思是什么意思是什么 浏览:1537
中考初中地理如何补 浏览:1428
360浏览器历史在哪里下载迅雷下载 浏览:808
数学奥数卡怎么办 浏览:1525
如何回答地理是什么 浏览:1156
win7如何删除电脑文件浏览历史 浏览:1163
大学物理实验干什么用的到 浏览:1613
二年级上册数学框框怎么填 浏览:1832
西安瑞禧生物科技有限公司怎么样 浏览:1433
武大的分析化学怎么样 浏览:1351
ige电化学发光偏高怎么办 浏览:1450
学而思初中英语和语文怎么样 浏览:1798
下列哪个水飞蓟素化学结构 浏览:1539
化学理学哪些专业好 浏览:1584
数学中的棱的意思是什么 浏览:1221