导航:首页 > 化学知识 > 色质谱分析化学怎么样

色质谱分析化学怎么样

发布时间:2022-08-18 16:44:32

A. 分析化学是学什么的

分析化学以化学基本理论和实验技术为基础,并吸收物理、生物、统计、电子计算机、自动化等方面的知识以充实本身的内容,从而解决科学、技术所提出的各种分析问题。

分析化学是化学的一个重要分支。其主要任务是研究下列问题:①物质中有哪些元素和(或)基团(定性分析);②每种成 分的数量或物质纯度如何(定量分析);③物质中原子彼此如何联结而成分子和在空间如何排列(结构和立体分析)。研究对象从单质到复杂的混合物和大分子化合物,从无机物到有机物,从低分子量到高分子量(如10原子质量单位)。样品可以是气态、液态和固态。称样重量可由 100克以上以至毫克以下。1931年E.威森伯格提出的残渣测定,只取10微克样品,便属于超微量分析。所用仪器从试管直到高级仪器(附自动化设备并用电子计算机程序控制、记录和储存)。 分析化学以化学基本理论和实验技术为基础,并吸收物理、生物、统计、电子计算机、自动化等方面的知识以充实本身的内容,从而解决科学、技术所提出的各种分析问题。

分析化学的主要任务是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)和存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等。

分析化学的任务

(1)确定物质的化学组成——定性分析

(2)测量各组成的含量——定量分析

(3)表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析

(4)表征组成、含量、结构、形态、能态的动力学特征——动态分析

分析化学主要任务是研究下列问题:①物质中有哪些元素和(或)基团(定性分析);②每种成 分的数量或物质纯度如何(定量分析);③物质中原子彼此如何联结而成分子和在空间如何排列(结构和立体分析)。研究对象从单质到复杂的混合物和大分子化合物,从无机物到有机物,从低分子量到高分子量(如10原子质量单位)。样品可以是气态、液态和固态。称样重量可由 100克以上以至毫克以下。1931年E.威森伯格提出的残渣测定,只取10微克样品,便属于超微量分析。所用仪器从试管直到高级仪器(附自动化设备并用电子计算机程序控制、记录和储存)。 分析化学以化学基本理论和实验技术为基础,并吸收物理、生物、统计、电子计算机、自动化等方面的知识以充实本身的内容,从而解决科学、技术所提出的各种分析问题。

当代分析化学将研究分为两个范畴,一是分析的对象,一是分析的方法。<分析化学期刊>(Analytical Chemistry)每年在第12期会在两个范畴轮流做一次回顾评述。

分析的对象

生物分析化学(Bioanalytical chemistry)

材料分析(Material analysis)

化学分析(Chemical analysis)

环境分析(Environmental analysis)

鉴识化学/鉴识科学(Forensic chemistry|Forensics)

分析的方法

光谱学

质谱学

分光度和比色法

层析和电泳法

结晶学

显微术

电化学分析

古典分析

虽说当代分析方法绝大部分为仪器分析,但有些仪器最初的设计目的,是为了简化古典方法的不便,基本原理仍来自于古典分析。另外,样品配置等前置处理,仍需要借由古典分析手法的协助。以下举一些古典分析方法: 滴定法

重量分析

无机定性分析

仪器分析

原子吸收光谱法(Atomic absorption spectros, AAS)

原子荧光光谱法(Atomic fluorescence spectros, AFS)

α质子-X射线光谱仪(Alpha particle X-ray spectrometer, APXS)

毛细管电泳分析仪(Capillary electrophoresis, CE)

色谱法(Chromatography)

比色法(Colorimetry)

循环伏安法(Cyclic Voltammetry, CV)

差示扫描量热法(Differential scanning calorimetry, DSC)

电子顺旋共振仪(Electron paramagnetic resonance, EPR)

电子自旋共振(Electron spin resonance, ESR)

椭圆偏振技术(Ellipsometry)

场流分离法(Field flow fractionation, FFF)

传式转换红外线光谱术(Fourier Transform Infrared Spectros, FTIR)

气相色谱法(Gas chromatography, GC)

气相色谱-质谱法(Gas chromatography-mass spectrometry, GC-MS)

高效液相色谱法(High Performance Liquid Chromatography, HPLC)

离子微探针(Ion Microprobe, IM)

感应耦合电浆(Inctively coupled plasma, ICP)

Instrumental mass fractionation (IMF)

选择性电极(Ion selective electrode, ISE)

激光诱导击穿光谱仪(Laser Inced Breakdown Spectros, LIBS)

质谱仪(Mass spectrometry, MS)

穆斯堡尔光谱仪系统(Mossbauer spectros)

核磁共振(Nuclear magnetic resonance, NMR)

粒子诱发X-射线产生(Particle inced X-ray emission spectros,PIXE)

热裂解-气相色谱-质谱仪(Pyrolysis-Gas Chromatography-Mass Spectrometry, PY-GC-MS)

拉曼光谱(Raman spectros)

折射率

共振增强多光子电离谱(Resonance enhanced multi-photon ionization, REMPI)

扫瞄穿透X射线显微镜(Scanning transmission X-ray micros, STXM)

薄板层析(Thin layer chromatography, TLC)

穿透式电子显微镜(Transmission electron micros, TEM)

X射线荧光光谱仪(X-ray fluorescence spectros, XRF)

X射线显微镜(X-ray micros, XRM)

分析化学是研究物质组成的科学,它包括化学分析、仪器分析两部分。

化学分析包括滴定分析和称量分析,它是根据物质的化学性质来测定物质的组成及相对含量。

仪器分析的方法很多,它是根据物质的物理性质或物质的物理化学性质来测定物质的组成及相对含量。仪器分析根据测定的方法原理不同,可分为电化学分析、光学分析、色谱分析、其他分析法等4大类。如右图。

化学分析是基础,仪器分析是目前的发展方向。

B. 西安交大分析化学有色谱专业吗

分析化学是涵盖所有类型的分析,包括光谱,色谱,质谱,波谱,能谱,极谱还有形态分析,西安交大这么大的高校不可能没有色谱专业方向的分析化学的,这些都是跟你选的导师有很大的关系,有的导师是做定量分析的,有的导师是做形态分析的,你想学色谱分析,就先去看导师的研究方向,然后在选择他就是了,所以你大可不必担心。

C. 仪器分析,像质谱,色谱这样的专业,目前就业市场怎么样再三四年呢有没有比较清楚这方面情况的……

看你是学什么专业的。如果想在仪器行业有作为,你需要工程师背景。质谱仪的维修在美国和欧洲都是非常抢手的。在中国,是说话现在水平还很落后。如果你可以维修使用仪器,是非常不一样的水准。在国内的很多大学,我知道很多教授是不让学生动手拆卸仪器的。都会请专人去修理。质谱仪市场不仅没有饱和,而且空间还很大。
质谱仪的离子化过程,气流设计,电路设计,实际上更加偏向物理。我们实验室的化学专业背景的博士后,明显不如有物理和工程背景的人上手快。遇到问题也没有办法维护。目前有很多年轻的质谱仪厂商正在崛起,到现在,也没有单独的一家把这个行业敢说怎么样的。
我认为这是非常有前途的方向。

D. 质谱分析法的基本原理

目前,质谱分析法 ( mass spectrometric method) 是测量同位素丰度最有效的方法。质谱仪根据带电原子和分子在磁场或电场中具有不同的运动,将它们相互分离。由于质谱仪的种类多样,用途又非常广泛,因此,就不一一进行介绍下面仅简单介绍一下质谱分析的基本原理,详细论述可参考 Brand ( 2002) 。

质谱仪一般可分为四个重要的组成部分: ① 进样系统; ② 离子源; ③ 质量分析器; ④ 离子检测器 ( 图 1. 8) 。

图 1. 8 用于稳定同位素测量的气源质谱仪示意图

( 1) 进样系统 ( inlet system) : 这一特殊装置需要在几秒钟内迅速、连续地分析两个气体 ( 样品和标准气) ,所以安装较为特殊,包括一个转换阀( changeover valve) 。这两种气体由直径约 0. 1mm、长约 1m 的毛细管从储样室( reservoir) 中引入,其中一种气体流向离子源 ( ion source) ,另一种气体流向废气泵 ( waste pump) ,从而保持毛细管中的气流连续不断。为避免质量损失( mass discrimination) ,气体物质的同位素丰度测量利用黏性的气体流。在黏性气流状态下,分子的自由路径长度非常小,因此分子经常发生碰撞,气体混合均匀,从而不会发生质量分离 ( mass separation) 。在黏性流进样系统的末端,有一个泄漏口 ( leak) ,使得流线收缩。应用双路进样系统 ( al inlet system)可以对非常少量的样品进行高精度分析,同时,样品分析受黏性气流保持状态的限制。这一过程一般在 15 ~ 20mbar ( 100Pa) 的压力下进行 ( Brand,2002) 。如要减小样品量,则必须在毛细管之前将气体浓缩为很小的体积。

( 2) 离子源 ( ion source) : 是质谱仪中离子形成、加速、聚焦成为狭窄的离子束的部位。在离子源中,气体流总是呈分子状态。气体样品的离子多由电子轰击 ( electron bombardment) 产生。电子束,一般由加热的钨丝或铼丝发出,在静电场中进行加速,在进入电离室 ( ionization chamber) 之前的能量达到 50 ~150eV 之间,以便使一次电离效率最大化。电离之后,根据离子获得的能量,带电分子被进一步分成若干分子碎片,从而产生特定化合物的质谱。

为了增加电离的几率,采用同性质的弱磁场使电子保持螺旋轨道 ( spiral path) 。电子在电离室的末端由带正电的捕集器收集,对电子流进行测量,并由电子发射调节器电路 ( emission regulator circuitry) 将其保持在恒定状态。

电离的分子在电场的作用下脱离电子束,随后由高达数千伏的电压进行加速,其路径形成离子束,该离子束通过出口狭缝进入分析器。因此,进入磁场的正离子在本质上都是单能的,即它们拥有相同的动能,其表达式如下:

稳定同位素地球化学( 第六版)

电离效率决定了质谱仪的灵敏度,其值约为 1000 ~2000 个分子产生一个离子( Brand,2002) 。

( 3) 质量分析器 ( mass analyzer) : 可根据其 m/e ( 质量/电荷) 比,将离子源发出的离子束分离开来。当离子束通过磁场时,离子发生偏转,形成圆周轨迹,其圆周半径与 m/e 的平方根成比例。通过这一过程,离子被分离并形成离子束,每个离子束都具有特定的 m/e 值。

1940 年,Nier 提出了扇形磁分析器 ( sector magnetic analyzer) 。在这种分析器中,离子束发生偏转的磁场呈楔形。离子束以与磁场边界呈直角的角度进入和离开磁场,因此其偏转角度等于楔形角 ( 如可以是 60°) 。扇形磁分析器的优势在于其离子源和检测器相对来说,不受分析器磁场质量损失的影响。

( 4) 离子检测器 ( ion detector) : 离子通过磁场后,被离子检测器所收集。离子检测器将输入的离子转换为电脉冲 ( electrical impulse) ,电脉冲随后被输入放大器。Nier et al. ( 1947) 提出,利用多个检测器同时聚集离子流。这种同时利用两个单独放大器的优势在于,对于所有 m/e 离子束,作为时间函数的离子流波动都是相同的。每一个检测器通道都安装有一个适合于所测离子流天然丰度的高电阻的电阻器。

现代同位素比质谱仪具有至少装有三个法拉第杯 ( Faraday collector,Faraday cup) ,它们位于质谱仪的焦平面 ( focal plane) 上。这是由于相邻峰值的间距随质量变化,并且范围是非线性的,因此,每组同位素往往都需要有一套单独的法拉第杯。

连续流: 同位素比值监测质谱仪

20 世纪 50 年代早期,Nier 提出了双黏性流质谱仪 ( al viscous-flow mass spectrometer) ,20 世纪 80 年代中期对商业质谱仪的硬件做了极小的修改。在过去的几年里,人们为减小用于同位素测量的样品大小而进行了艰苦的尝试。将传统的双路进样技术改为连续流同位素比值监测质谱仪 ( continuous-flowisotope ratio monitoring mass spectrometer) 。使用这种质谱仪时,被分析的气体混合于载气流中的微量的气体中,从而达到黏性流状态。现今,市场在售的大多数气体质谱仪都带有连续流系统,而非双路进样系统。

传统的离线样品制备程序非常耗时,并且分析精度也取决于研究者的技能。而利用在线样品制备技术,可将元素分析器和质谱仪直接结合,从而解决和最大程度地减少很多离线样品制备导致的问题。这两种技术的区别参看表 1. 5。

表 1. 5 离线和在线测量技术之间的对比

这种新型的质谱仪往往结合有色谱技术 ( chromatographic technique) 。同位素测量所需的样品量大小已经急剧减小到十亿分之一摩尔甚至万亿分之一摩尔范围 ( Merritt & Hayes,1994) 。气相色谱-同位素比质谱仪技术 ( GC -IRMS) 的重要特性如下 ( Brand,2002) :

( 1) 按照分子在气相色谱柱 ( GS column) 上流出的顺序对离子流进行测量,但其相对于参比气体的强度将不会发生明显改变。色谱不但能够分离不同的化学物质种类,还可分离不同的同位素种类。也就是说,从色谱柱流出后,随色谱峰上位置的不同,该化合物的同位素组成发生变化。因此,必须对每个色谱峰的整体宽度进行积分,才能获得该化合物真实的同位素比值。

(2)同位素信号的测量时间受色谱峰宽度的限制。对于陡峭的尖峰来说,这一时间可能不超过5s。

(3)在线分析仪器的绝对灵敏度与双路进样系统的仪器相比更为重要。由于色谱法所需的样品量非常小,因此采用大量的样品组以获得有效的统计数据库往往非常重要。

通过采用加入内标样方法,可以实现样品分析标准化。内标样的同位素组成利用传统技术确定。

质谱分析技术有几个独立的发展途径,这些途径均具有两个发展方向:元素分析仪→同位素比质谱仪,毛细管气相色谱→同位素比质谱仪。在元素分析仪中,样品燃烧生成CO2、N2、SO2和H2O,这些气体以化学法捕集,或者在气相色谱柱上被分离。这些技术的优势有:①自动化制备样品;②每个样品的成本较低;③能够进行大量的样品分析。

E. 请问 气相色谱质谱 液相色谱质谱 还有离子色谱 几者之间的区别

色谱法,又称色层法或层析法,是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。它的英文名称为:chromatography这个词来源于希腊字
chroma和
graphein,直译成英文时为
color和writing两个字;直译成中文为色谱法。但也有人意译为色层法或层析法。
在色谱法中,静止不动的一相(固体或液体)称为固定相(stationary
phase)
;运动的一相(一般是气体或液体)称为流动相(mobile
phase)。
流动相是气体的称为气相色谱,流动相是液体的称为液相色谱。
离子色谱:
狭义定义:
以低交换容量的离子交换树脂为固定相对离子性物质进行分离,用电导检测器连续检测流出物电导变化的一种液相色谱方法。
广义定义:
利用被测物质的离子性进行分离和检测的液相色谱法。
所以离子色谱实际上是液相色谱的一种。
质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。
简单来说色谱是是物质的分离方法,质谱是检测方法。
一般的色谱用电导检测器或UV检测,牛B的用质谱检测。

F. 色谱与质谱的联系与差别

联系是都可以对样品进行定量和定性分析,但定性的话,质谱是最准确的;区别就是色谱是通过样品里面的物质在不同溶剂里面的分配比不一样儿道道分离的效果,而质谱是将物质打成质子碎片,从而得到数据;一般色谱和质谱是连用的,如气质,液质。

G. 化学分析方法和色谱光谱分析法,哪个更好一些

化学分析法的操作相对复杂,精确度高(相比色谱光谱) 适合常量分析 很多结构复杂的物质不能用化学分析法。
色谱光谱的准确度高 但精确度不及化学分析法 (只有1%)因此适合微量分析。
另外色谱可以分离 而光谱更多的用来确定结构。

现在NB的都是联用技术,比如液相色谱质谱联用,等等

H. 各位朋友,我大学学的是生物,研究生做色谱质谱分析 请问就业前景如何

不是很好。看你的课题和你老板的底子硬不硬。当然还有你工作的地方,如果想毕业后继续干这行的话,多参加这方面的技能培训(看你老板给不给钱),拿了证书很有用。Thermo fisher的气质培训,在你面试的时候,谁用谁知道。

阅读全文

与色质谱分析化学怎么样相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:448
乙酸乙酯化学式怎么算 浏览:1119
沈阳初中的数学是什么版本的 浏览:1031
华为手机家人共享如何查看地理位置 浏览:758
一氧化碳还原氧化铝化学方程式怎么配平 浏览:596
数学c什么意思是什么意思是什么 浏览:1084
中考初中地理如何补 浏览:1035
360浏览器历史在哪里下载迅雷下载 浏览:463
数学奥数卡怎么办 浏览:1063
如何回答地理是什么 浏览:787
win7如何删除电脑文件浏览历史 浏览:829
大学物理实验干什么用的到 浏览:1172
二年级上册数学框框怎么填 浏览:1383
西安瑞禧生物科技有限公司怎么样 浏览:532
武大的分析化学怎么样 浏览:963
ige电化学发光偏高怎么办 浏览:1060
学而思初中英语和语文怎么样 浏览:1283
下列哪个水飞蓟素化学结构 浏览:1122
化学理学哪些专业好 浏览:1209
数学中的棱的意思是什么 浏览:740